In
mathematical analysis
Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (m ...
, a null set
is a
measurable set
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as mass and probability of events. These seemingly distinct concepts have many simila ...
that has measure zero. This can be characterized as a set that can be
covered
Cover or covers may refer to:
Packaging
* Another name for a lid
* Cover (philately), generic term for envelope or package
* Album cover, the front of the packaging
* Book cover or magazine cover
** Book design
** Back cover copy, part of co ...
by a
countable
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; ...
union of
intervals of arbitrarily small total length.
The notion of null set should not be confused with the
empty set
In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other ...
as defined in
set theory
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly conce ...
. Although the empty set has
Lebesgue measure zero, there are also non-empty sets which are null. For example, any non-empty countable set of real numbers has Lebesgue measure zero and therefore is null.
More generally, on a given
measure space
A measure space is a basic object of measure theory, a branch of mathematics that studies generalized notions of volumes. It contains an underlying set, the subsets of this set that are feasible for measuring (the -algebra) and the method that i ...
a null set is a set
such that
.
Example
Every finite or countably infinite subset of the real numbers is a null set. For example, the set of natural numbers and the set of rational numbers are both countably infinite and therefore are null sets when considered as subsets of the real numbers.
The
Cantor set
In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and introduced by German mathematician Georg Cantor in 1883.
Thr ...
is an example of an uncountable null set.
Definition
Suppose
is a subset of the
real line
In elementary mathematics, a number line is a picture of a graduated straight line (geometry), line that serves as visual representation of the real numbers. Every point of a number line is assumed to correspond to a real number, and every real ...
such that
where the are
intervals and is the length of , then is a null set, also known as a set of zero-content.
In terminology of
mathematical analysis
Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (m ...
, this definition requires that there be a
sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is calle ...
of
open cover
In mathematics, and more particularly in set theory, a cover (or covering) of a set X is a collection of subsets of X whose union is all of X. More formally, if C = \lbrace U_\alpha : \alpha \in A \rbrace is an indexed family of subsets U_\alpha\s ...
s of for which the
limit
Limit or Limits may refer to:
Arts and media
* ''Limit'' (manga), a manga by Keiko Suenobu
* ''Limit'' (film), a South Korean film
* Limit (music), a way to characterize harmony
* "Limit" (song), a 2016 single by Luna Sea
* "Limits", a 2019 ...
of the lengths of the covers is zero.
Properties
The
empty set
In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other ...
is always a null set. More generally, any
countable
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; ...
union
Union commonly refers to:
* Trade union, an organization of workers
* Union (set theory), in mathematics, a fundamental operation on sets
Union may also refer to:
Arts and entertainment
Music
* Union (band), an American rock group
** ''Un ...
of null sets is null. Any subset of a null set is itself a null set. Together, these facts show that the ''m''-null sets of ''X'' form a
sigma-ideal
In mathematics, particularly measure theory, a -ideal, or sigma ideal, of a sigma-algebra (, read "sigma," means countable in this context) is a subset with certain desirable closure properties. It is a special type of ideal. Its most frequent a ...
on ''X''. Similarly, the measurable ''m''-null sets form a sigma-ideal of the
sigma-algebra of measurable sets. Thus, null sets may be interpreted as
negligible set
In mathematics, a negligible set is a set that is small enough that it can be ignored for some purpose.
As common examples, finite sets can be ignored when studying the limit of a sequence, and null sets can be ignored when studying the integr ...
s, defining a notion of
almost everywhere
In measure theory (a branch of mathematical analysis), a property holds almost everywhere if, in a technical sense, the set for which the property holds takes up nearly all possibilities. The notion of "almost everywhere" is a companion notion to ...
.
Lebesgue measure
The
Lebesgue measure is the standard way of assigning a
length
Length is a measure of distance. In the International System of Quantities, length is a quantity with dimension distance. In most systems of measurement a base unit for length is chosen, from which all other units are derived. In the Interna ...
,
area
Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape
A shape or figure is a graphics, graphical representation of an obje ...
or
volume
Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). The de ...
to subsets of
Euclidean space
Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's Elements, Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics ther ...
.
A subset ''N'' of
has null Lebesgue measure and is considered to be a null set in
if and only if:
:
Given any
In mathematical logic, a universal quantification is a type of quantifier, a logical constant which is interpreted as "given any" or "for all". It expresses that a predicate can be satisfied by every member of a domain of discourse. In other ...
positive number
In mathematics, the sign of a real number is its property of being either positive, negative, or zero. Depending on local conventions, zero may be considered as being neither positive nor negative (having no sign or a unique third sign), or it ...
''ε'',
there is
English grammar is the set of structural rules of the English language. This includes the structure of words, phrases, clauses, sentences, and whole texts.
This article describes a generalized, present-day Standard English – a form of speech an ...
a
sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is calle ...
of
intervals
Interval may refer to:
Mathematics and physics
* Interval (mathematics), a range of numbers
** Partially ordered set#Intervals, its generalization from numbers to arbitrary partially ordered sets
* A statistical level of measurement
* Interval e ...
in
such that ''N'' is contained in the union of the and the total length of the union is less than ''ε''.
This condition can be generalised to
, using ''n''-
cube
In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross.
The cube is the only r ...
s instead of intervals. In fact, the idea can be made to make sense on any
manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
, even if there is no Lebesgue measure there.
For instance:
* With respect to
, all
singleton set
In mathematics, a singleton, also known as a unit set or one-point set, is a set with exactly one element. For example, the set \ is a singleton whose single element is 0.
Properties
Within the framework of Zermelo–Fraenkel set theory, the ...
s are null, and therefore all
countable set
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; ...
s are null. In particular, the set Q of
rational number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ration ...
s is a null set, despite being
dense
Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematically ...
in
.
* The standard construction of the
Cantor set
In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and introduced by German mathematician Georg Cantor in 1883.
Thr ...
is an example of a null
uncountable set
In mathematics, an uncountable set (or uncountably infinite set) is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal numb ...
in
; however other constructions are possible which assign the Cantor set any measure whatsoever.
* All the subsets of
whose
dimension
In physics and mathematics, the dimension of a Space (mathematics), mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any Point (geometry), point within it. Thus, a Line (geometry), lin ...
is smaller than ''n'' have null Lebesgue measure in
. For instance straight lines or circles are null sets in
.
*
Sard's lemma
In mathematics, Sard's theorem, also known as Sard's lemma or the Morse–Sard theorem, is a result in mathematical analysis that asserts that the set of critical values (that is, the image of the set of critical points) of a smooth functi ...
: the set of
critical value
Critical value may refer to:
*In differential topology, a critical value of a differentiable function between differentiable manifolds is the image (value of) ƒ(''x'') in ''N'' of a critical point ''x'' in ''M''.
*In statistical hypothesis ...
s of a smooth function has measure zero.
If λ is Lebesgue measure for
and π is Lebesgue measure for
, then the
product measure In mathematics, given two measurable spaces and measures on them, one can obtain a product measurable space and a product measure on that space. Conceptually, this is similar to defining the Cartesian product of sets and the product topology of tw ...
. In terms of null sets, the following equivalence has been styled a
Fubini's theorem
In mathematical analysis Fubini's theorem is a result that gives conditions under which it is possible to compute a double integral by using an iterated integral, introduced by Guido Fubini in 1907. One may switch the order of integration if th ...
:
* For
and
Uses
Null sets play a key role in the definition of the
Lebesgue integral
In mathematics, the integral of a non-negative function of a single variable can be regarded, in the simplest case, as the area between the graph of that function and the -axis. The Lebesgue integral, named after French mathematician Henri Lebe ...
: if functions and are equal except on a null set, then is integrable if and only if is, and their integrals are equal. This motivates the formal definition of
spaces as sets of equivalence classes of functions which differ only on null sets.
A measure in which all subsets of null sets are measurable is ''
complete
Complete may refer to:
Logic
* Completeness (logic)
* Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable
Mathematics
* The completeness of the real numbers, which implies t ...
''. Any non-complete measure can be completed to form a complete measure by asserting that subsets of null sets have measure zero. Lebesgue measure is an example of a complete measure; in some constructions, it is defined as the completion of a non-complete
Borel measure.
A subset of the Cantor set which is not Borel measurable
The Borel measure is not complete. One simple construction is to start with the standard
Cantor set
In mathematics, the Cantor set is a set of points lying on a single line segment that has a number of unintuitive properties. It was discovered in 1874 by Henry John Stephen Smith and introduced by German mathematician Georg Cantor in 1883.
Thr ...
, which is closed hence Borel measurable, and which has measure zero, and to find a subset of which is not Borel measurable. (Since the Lebesgue measure is complete, this is of course Lebesgue measurable.)
First, we have to know that every set of positive measure contains a nonmeasurable subset. Let be the
Cantor function
In mathematics, the Cantor function is an example of a function that is continuous, but not absolutely continuous. It is a notorious counterexample in analysis, because it challenges naive intuitions about continuity, derivative, and measure. Th ...
, a continuous function which is locally constant on , and monotonically increasing on
, 1 with and . Obviously, is countable, since it contains one point per component of . Hence has measure zero, so has measure one. We need a strictly
monotonic function
In mathematics, a monotonic function (or monotone function) is a function between ordered sets that preserves or reverses the given order. This concept first arose in calculus, and was later generalized to the more abstract setting of order ...
, so consider . Since is strictly monotonic and continuous, it is a
homeomorphism
In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphi ...
. Furthermore, has measure one. Let be non-measurable, and let . Because is injective, we have that , and so is a null set. However, if it were Borel measurable, then would also be Borel measurable (here we use the fact that the
preimage
In mathematics, the image of a function is the set of all output values it may produce.
More generally, evaluating a given function f at each element of a given subset A of its domain produces a set, called the "image of A under (or through) ...
of a Borel set by a continuous function is measurable; is the preimage of ''F'' through the continuous function .) Therefore, is a null, but non-Borel measurable set.
Haar null
In a
separable Banach space
In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vector ...
, the group operation moves any subset to the translates for any . When there is a
probability measure on the σ-algebra of
Borel subset
In mathematics, a Borel set is any set in a topological space that can be formed from open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement. Borel sets are nam ...
s of , such that for all , , then is a Haar null set.
The term refers to the null invariance of the measures of translates, associating it with the complete invariance found with
Haar measure In mathematical analysis, the Haar measure assigns an "invariant volume" to subsets of locally compact topological groups, consequently defining an integral for functions on those groups.
This measure was introduced by Alfréd Haar in 1933, though ...
.
Some algebraic properties of
topological group
In mathematics, topological groups are logically the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two str ...
s have been related to the size of subsets and Haar null sets.
Haar null sets have been used in
Polish group
Polish may refer to:
* Anything from or related to Poland, a country in Europe
* Polish language
* Poles
Poles,, ; singular masculine: ''Polak'', singular feminine: ''Polka'' or Polish people, are a West Slavic nation and ethnic group, w ...
s to show that when is not a
meagre set
In the mathematical field of general topology, a meagre set (also called a meager set or a set of first category) is a subset of a topological space that is small or negligible in a precise sense detailed below. A set that is not meagre is calle ...
then contains an open neighborhood of the
identity element
In mathematics, an identity element, or neutral element, of a binary operation operating on a set is an element of the set that leaves unchanged every element of the set when the operation is applied. This concept is used in algebraic structures su ...
.
This property is named for
Hugo Steinhaus
Hugo Dyonizy Steinhaus ( ; ; January 14, 1887 – February 25, 1972) was a Polish mathematician and educator. Steinhaus obtained his PhD under David Hilbert at Göttingen University in 1911 and later became a professor at the Jan Kazimierz Un ...
since it is the conclusion of the
Steinhaus theorem.
See also
*
Cantor function
In mathematics, the Cantor function is an example of a function that is continuous, but not absolutely continuous. It is a notorious counterexample in analysis, because it challenges naive intuitions about continuity, derivative, and measure. Th ...
*
Measure (mathematics)
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures ( length, area, volume) and other common notions, such as mass and probability of events. These seemingly distinct concepts have many simil ...
*
Empty set
In mathematics, the empty set is the unique set having no elements; its size or cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other ...
*
Nothing
Nothing, the complete absence of anything, has been a matter of philosophical debate since at least the 5th century BC. Early Greek philosophers argued that it was impossible for ''nothing'' to exist. The atomists allowed ''nothing'' but only i ...
References
Further reading
*
*
*
{{Measure theory
Measure theory
Set theory