Contraction Mapping Theorem
   HOME





Contraction Mapping Theorem
In mathematics, the Banach fixed-point theorem (also known as the contraction mapping theorem or contractive mapping theorem or Banach–Caccioppoli theorem) is an important tool in the theory of metric spaces; it guarantees the existence and uniqueness of fixed points of certain self-maps of metric spaces and provides a constructive method to find those fixed points. It can be understood as an abstract formulation of Picard's method of successive approximations. The theorem is named after Stefan Banach (1892–1945) who first stated it in 1922. Statement ''Definition.'' Let (X, d) be a metric space. Then a map T : X \to X is called a contraction mapping on ''X'' if there exists q \in empty complete metric space with a contraction mapping T : X \to X. Then ''T'' admits a unique Fixed point (mathematics)">fixed-point x^* in ''X'' (i.e. T(x^*) = x^*). Furthermore, x^* can be found as follows: start with an arbitrary element x_0 \in X and define a sequence (x_n)_ by x_n = T(x_) for n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Picard–Lindelöf Theorem
In mathematics, specifically the study of differential equations, the Picard–Lindelöf theorem gives a set of conditions under which an initial value problem has a unique solution. It is also known as Picard's existence theorem, the Cauchy–Lipschitz theorem, or the existence and uniqueness theorem. The theorem is named after Émile Picard, Ernst Lindelöf, Rudolf Lipschitz and Augustin-Louis Cauchy. Theorem Let D \subseteq \R \times \R^n be a closed rectangle with (t_0, y_0) \in \operatorname D, the interior of D. Let f: D \to \R^n be a function that is continuous in t and Lipschitz continuous in y (with Lipschitz constant independent from t). Then there exists some \varepsilon > 0 such that the initial value problem y'(t)=f(t,y(t)),\qquad y(t_0)=y_0 has a unique solution y(t) on the interval _0-\varepsilon, t_0+\varepsilon/math>. Proof sketch A standard proof relies on transforming the differential equation into an integral equation, then applying the Banach fixe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


T1 Space
In topology and related branches of mathematics, a T1 space is a topological space in which, for every pair of distinct points, each has a neighborhood not containing the other point. An R0 space is one in which this holds for every pair of topologically distinguishable points. The properties T1 and R0 are examples of separation axioms. Definitions Let ''X'' be a topological space and let ''x'' and ''y'' be points in ''X''. We say that ''x'' and ''y'' are if each lies in a neighbourhood that does not contain the other point. * ''X'' is called a T1 space if any two distinct points in ''X'' are separated. * ''X'' is called an R0 space if any two topologically distinguishable points in ''X'' are separated. A T1 space is also called an accessible space or a space with Fréchet topology and an R0 space is also called a symmetric space. (The term also has an entirely different meaning in functional analysis. For this reason, the term ''T1 space'' is preferred. There is also a n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Iterated Function
In mathematics, an iterated function is a function that is obtained by composing another function with itself two or several times. The process of repeatedly applying the same function is called iteration. In this process, starting from some initial object, the result of applying a given function is fed again into the function as input, and this process is repeated. For example, on the image on the right: : Iterated functions are studied in computer science, fractals, dynamical systems, mathematics and renormalization group physics. Definition The formal definition of an iterated function on a set ''X'' follows. Let be a set and be a function. Defining as the ''n''-th iterate of , where ''n'' is a non-negative integer, by: f^0 ~ \stackrel ~ \operatorname_X and f^ ~ \stackrel ~ f \circ f^, where is the identity function on and denotes function composition. This notation has been traced to and John Frederick William Herschel in 1813. Herschel credited ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set (mathematics)
In mathematics, a set is a collection of different things; the things are '' elements'' or ''members'' of the set and are typically mathematical objects: numbers, symbols, points in space, lines, other geometric shapes, variables, or other sets. A set may be finite or infinite. There is a unique set with no elements, called the empty set; a set with a single element is a singleton. Sets are ubiquitous in modern mathematics. Indeed, set theory, more specifically Zermelo–Fraenkel set theory, has been the standard way to provide rigorous foundations for all branches of mathematics since the first half of the 20th century. Context Before the end of the 19th century, sets were not studied specifically, and were not clearly distinguished from sequences. Most mathematicians considered infinity as potentialmeaning that it is the result of an endless processand were reluctant to consider infinite sets, that is sets whose number of members is not a natural number. Specific ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Czesław Bessaga
Czesław, (, , ) is an old given name derived from the Slavic elements ''ča'' (to await) and ''slava'' (glory). Feminine form: Czesława/Česlava. The name may refer to: * Ceslaus, Christian Saint * Czesław Białobrzeski, Polish physicist * Czesław Bieżanko, Polish entomologist and recognized authority on South American butterflies * Czesław Bobrowski, Polish economist in postwar Poland * Czeslaw Brzozowicz, consulting engineer for the CN Tower, Toronto-Dominion Centre, first Toronto subway line * Czesław Dźwigaj, Polish artist and sculptor * Czesław Hoc, Polish politician * Czeslaw Idzkiewicz, Polish painter and teacher * Czeslaw Kozon, Roman Catholic bishop of the Diocese of Copenhagen * Czesław Kiszczak, Polish general and politician * Czesław Lang, Polish former road racing cyclist * Czesław Łuczak, Polish historian, former rector of the Adam Mickiewicz University * Czesław Marchaj, Polish yachtsman * Czesław Marek, Polish composer, pianist * Czesław Meyer, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Economics Letters
Economics Letters is a scholarly peer-reviewed journal of economics that publishes concise communications (letters) that provide a means of rapid and efficient dissemination of new results, models and methods in all fields of economic research. Published by Elsevier. The journal was established in 1978 and the current editors-in-chief are Badi H. Baltagi (Syracuse University), Joao F. Gomes (Wharton School of the University of Pennsylvania), Costas Meghir (Yale University), Pierre-Daniel Sarte, ( Federal Reserve Bank of Richmond) and Roberto Serrano (Brown University). According to the ''Journal Citation Reports'', the journal has a 2020 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a type of journal ranking. Journals with higher impact factor values are considered more prestigious or important within their field. The Impact Factor of a journa ... of 2.097. References External links * Economics journals Elsevier academic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cournot Competition
Cournot competition is an economic model used to describe an industry structure in which companies compete on the amount of output they will produce, which they decide on independently of each other and at the same time. It is named after Antoine Augustin Cournot (1801–1877) who was inspired by observing competition in a spring water duopoly. It has the following features: * There is more than one firm and all firms produce a homogeneous product, i.e., there is no product differentiation; * Firms do not cooperate, i.e., there is no collusion; * Firms have market power, i.e., each firm's output decision affects the good's price; * The number of firms is fixed; * Firms compete in quantities rather than prices; and * The firms are economically rational and act strategically, usually seeking to maximize profit given their competitors' decisions. An essential assumption of this model is the "not conjecture" that each firm aims to maximize profits, based on the expectation that i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Reinforcement Learning
Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent should take actions in a dynamic environment in order to maximize a reward signal. Reinforcement learning is one of the three basic machine learning paradigms, alongside supervised learning and unsupervised learning. Reinforcement learning differs from supervised learning in not needing labelled input-output pairs to be presented, and in not needing sub-optimal actions to be explicitly corrected. Instead, the focus is on finding a balance between exploration (of uncharted territory) and exploitation (of current knowledge) with the goal of maximizing the cumulative reward (the feedback of which might be incomplete or delayed). The search for this balance is known as the exploration–exploitation dilemma. The environment is typically stated in the form of a Markov decision process (MDP), as many reinforcement learning algorithms use dyn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematische Nachrichten
''Mathematische Nachrichten'' (abbreviated ''Math. Nachr.''; English: ''Mathematical News'') is a mathematical journal published in 12 issues per year by Wiley-VCH GmbH. It should not be confused with the ''Internationale Mathematische Nachrichten'', an unrelated publication of the Austrian Mathematical Society. It was established in 1948 by East German mathematician Erhard Schmidt, who became its first editor-in-chief. At that time it was associated with the German Academy of Sciences at Berlin, and published by Akademie Verlag. After the fall of the Berlin Wall, Akademie Verlag was sold to VCH Verlagsgruppe Weinheim, which in turn was sold to John Wiley & Sons. According to the 2020 edition of Journal Citation Reports, the journal had an impact factor of 1.228, ranking it 111th among 333 journals in the category "Mathematics". As of 2021, Ben Andrews, Robert Denk, Klaus Hulek and Frédéric Klopp are the editors-in-chief of the journal. References External links

* * P ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nash Embedding Theorem
The Nash embedding theorems (or imbedding theorems), named after John Forbes Nash Jr., state that every Riemannian manifold can be isometrically embedding, embedded into some Euclidean space. Isometry, Isometric means preserving the length of every rectifiable path, path. For instance, bending but neither stretching nor tearing a page of paper gives an isometric embedding of the page into Euclidean space because curves drawn on the page retain the same arclength however the page is bent. The first theorem is for continuously differentiable (''C''1) embeddings and the second for embeddings that are analytic function, analytic or smooth function, smooth of class ''Ck'', 3 ≤ ''k'' ≤ ∞. These two theorems are very different from each other. The first theorem has a very simple proof but leads to some counterintuitive conclusions, while the second theorem has a technical and counterintuitive proof but leads to a less surprising result. The ''C''1 theorem was published in 1954, th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inverse Function Theorem
In mathematics, the inverse function theorem is a theorem that asserts that, if a real function ''f'' has a continuous derivative near a point where its derivative is nonzero, then, near this point, ''f'' has an inverse function. The inverse function is also differentiable, and the '' inverse function rule'' expresses its derivative as the multiplicative inverse of the derivative of ''f''. The theorem applies verbatim to complex-valued functions of a complex variable. It generalizes to functions from ''n''-tuples (of real or complex numbers) to ''n''-tuples, and to functions between vector spaces of the same finite dimension, by replacing "derivative" with "Jacobian matrix" and "nonzero derivative" with "nonzero Jacobian determinant". If the function of the theorem belongs to a higher differentiability class, the same is true for the inverse function. There are also versions of the inverse function theorem for holomorphic functions, for differentiable maps between manifold ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]