HOME

TheInfoList



OR:

In mathematics, an iterated function is a function (that is, a function from some set to itself) which is obtained by composing another function with itself a certain number of times. The process of repeatedly applying the same function is called
iteration Iteration is the repetition of a process in order to generate a (possibly unbounded) sequence of outcomes. Each repetition of the process is a single iteration, and the outcome of each iteration is then the starting point of the next iteration. ...
. In this process, starting from some initial object, the result of applying a given function is fed again in the function as input, and this process is repeated. For example on the image on the right: :
with the circle‑shaped symbol of function composition. Iterated functions are objects of study in
computer science Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to practical disciplines (includin ...
,
fractals In mathematics, a fractal is a geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scales, as ill ...
,
dynamical system In mathematics, a dynamical system is a system in which a function describes the time dependence of a point in an ambient space. Examples include the mathematical models that describe the swinging of a clock pendulum, the flow of water i ...
s, mathematics and
renormalization group In theoretical physics, the term renormalization group (RG) refers to a formal apparatus that allows systematic investigation of the changes of a physical system as viewed at different scales. In particle physics, it reflects the changes in the ...
physics.


Definition

The formal definition of an iterated function on a set ''X'' follows. Let be a set and be a function. Defining as the ''n''-th iterate of (a notation introduced by Hans Heinrich Bürmann and John Frederick William Herschel), where ''n'' is a non-negative integer, by: f^0 ~ \stackrel ~ \operatorname_X and f^ ~ \stackrel ~ f \circ f^, where is the
identity function Graph of the identity function on the real numbers In mathematics, an identity function, also called an identity relation, identity map or identity transformation, is a function that always returns the value that was used as its argument, unc ...
on and denotes
function composition In mathematics, function composition is an operation that takes two functions and , and produces a function such that . In this operation, the function is applied to the result of applying the function to . That is, the functions and ...
. That is, :, always
associative In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement ...
. Because the notation may refer to both iteration (composition) of the function or exponentiation of the function (the latter is commonly used in
trigonometry Trigonometry () is a branch of mathematics that studies relationships between side lengths and angles of triangles. The field emerged in the Hellenistic world during the 3rd century BC from applications of geometry to astronomical studies. ...
), some mathematicians choose to use to denote the compositional meaning, writing for the -th iterate of the function , as in, for example, meaning . For the same purpose, was used by Benjamin Peircewhile is taken for the th derivative whereas
Alfred Pringsheim Alfred Pringsheim (2 September 1850 – 25 June 1941) was a German mathematician and patron of the arts. He was born in Ohlau, Prussian Silesia (now Oława, Poland) and died in Zürich, Switzerland. Family and academic career Pringsheim came ...
and Jules Molk suggested instead.


Abelian property and iteration sequences

In general, the following identity holds for all non-negative integers and , : f^m \circ f^n = f^n \circ f^m = f^~. This is structurally identical to the property of
exponentiation Exponentiation is a mathematical operation, written as , involving two numbers, the '' base'' and the ''exponent'' or ''power'' , and pronounced as " (raised) to the (power of) ". When is a positive integer, exponentiation corresponds to re ...
that , i.e. the special case . In general, for arbitrary general (negative, non-integer, etc.) indices and , this relation is called the translation functional equation, cf. Schröder's equation and Abel equation. On a logarithmic scale, this reduces to the nesting property of
Chebyshev polynomials The Chebyshev polynomials are two sequences of polynomials related to the cosine and sine functions, notated as T_n(x) and U_n(x). They can be defined in several equivalent ways, one of which starts with trigonometric functions: The Chebys ...
, , since . The relation also holds, analogous to the property of exponentiation that . The sequence of functions is called a Picard sequence, named after Charles Émile Picard. For a given in , the
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is called ...
of values is called the
orbit In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such a ...
of . If for some integer , the orbit is called a periodic orbit. The smallest such value of for a given is called the period of the orbit. The point itself is called a
periodic point In mathematics, in the study of iterated functions and dynamical systems, a periodic point of a function is a point which the system returns to after a certain number of function iterations or a certain amount of time. Iterated functions Given ...
. The cycle detection problem in computer science is the
algorithm In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing ...
ic problem of finding the first periodic point in an orbit, and the period of the orbit.


Fixed points

If for some in (that is, the period of the orbit of is ), then is called a fixed point of the iterated sequence. The set of fixed points is often denoted as . There exist a number of
fixed-point theorem In mathematics, a fixed-point theorem is a result saying that a function ''F'' will have at least one fixed point (a point ''x'' for which ''F''(''x'') = ''x''), under some conditions on ''F'' that can be stated in general terms. Some authors cla ...
s that guarantee the existence of fixed points in various situations, including the Banach fixed point theorem and the Brouwer fixed point theorem. There are several techniques for convergence acceleration of the sequences produced by fixed point iteration. For example, the
Aitken method In numerical analysis, Aitken's delta-squared process or Aitken extrapolation is a series acceleration method, used for accelerating the rate of convergence of a sequence. It is named after Alexander Aitken, who introduced this method in 1926.Alexa ...
applied to an iterated fixed point is known as
Steffensen's method In numerical analysis, Steffensen's method is a root-finding technique named after Johan Frederik Steffensen which is similar to Newton's method. Steffensen's method also achieves quadratic convergence, but without using derivatives as Newton's me ...
, and produces quadratic convergence.


Limiting behaviour

Upon iteration, one may find that there are sets that shrink and converge towards a single point. In such a case, the point that is converged to is known as an
attractive fixed point A fixed point (sometimes shortened to fixpoint, also known as an invariant point) is a value that does not change under a given transformation. Specifically, in mathematics, a fixed point of a function is an element that is mapped to itself by the ...
. Conversely, iteration may give the appearance of points diverging away from a single point; this would be the case for an
unstable fixed point A fixed point (sometimes shortened to fixpoint, also known as an invariant point) is a value that does not change under a given transformation. Specifically, in mathematics, a fixed point of a function is an element that is mapped to itself by the ...
. When the points of the orbit converge to one or more limits, the set of accumulation points of the orbit is known as the limit set or the ω-limit set. The ideas of attraction and repulsion generalize similarly; one may categorize iterates into stable sets and
unstable set In mathematics, and in particular the study of dynamical systems, the idea of ''stable and unstable sets'' or stable and unstable manifolds give a formal mathematical definition to the general notions embodied in the idea of an attractor or repel ...
s, according to the behaviour of small neighborhoods under iteration. (Also see
Infinite compositions of analytic functions In mathematics, infinite Function composition, compositions of analytic functions (ICAF) offer alternative formulations of Generalized continued fraction, analytic continued fractions, series (mathematics), series, product (mathematics), products a ...
.) Other limiting behaviours are possible; for example,
wandering point In dynamical systems and ergodic theory, the concept of a wandering set formalizes a certain idea of movement and mixing. When a dynamical system has a wandering set of non-zero measure, then the system is a dissipative system. This is the opposit ...
s are points that move away, and never come back even close to where they started.


Invariant measure

If one considers the evolution of a density distribution, rather than that of individual point dynamics, then the limiting behavior is given by the invariant measure. It can be visualized as the behavior of a point-cloud or dust-cloud under repeated iteration. The invariant measure is an eigenstate of the Ruelle-Frobenius-Perron operator or transfer operator, corresponding to an eigenvalue of 1. Smaller eigenvalues correspond to unstable, decaying states. In general, because repeated iteration corresponds to a shift, the transfer operator, and its adjoint, the
Koopman operator In mathematics, the composition operator C_\phi with symbol \phi is a linear operator defined by the rule C_\phi (f) = f \circ \phi where f \circ \phi denotes function composition. The study of composition operators is covered bAMS category 47B33 ...
can both be interpreted as
shift operator In mathematics, and in particular functional analysis, the shift operator also known as translation operator is an operator that takes a function to its translation . In time series analysis, the shift operator is called the lag operator. Shift ...
s action on a shift space. The theory of
subshifts of finite type In mathematics, subshifts of finite type are used to model dynamical systems, and in particular are the objects of study in symbolic dynamics and ergodic theory. They also describe the set of all possible sequences executed by a finite state machine ...
provides general insight into many iterated functions, especially those leading to chaos.


Fractional iterates and flows, and negative iterates

The notion must be used with care when the equation has multiple solutions, which is normally the case, as in Babbage's equation of the functional roots of the identity map. For example, for and , both and are solutions; so the expression doesn't denote a unique function, just as numbers have multiple algebraic roots. The issue is quite similar to the expression " 0/0" in arithmetic. A trivial root of ''f'' can always be obtained if ''f''s domain can be extended sufficiently, cf. picture. The roots chosen are normally the ones belonging to the orbit under study. Fractional iteration of a function can be defined: for instance, a half iterate of a function is a function such that . This function can be written using the index notation as . Similarly, is the function defined such that , while may be defined as equal to , and so forth, all based on the principle, mentioned earlier, that . This idea can be generalized so that the iteration count becomes a continuous parameter, a sort of continuous "time" of a continuous
orbit In celestial mechanics, an orbit is the curved trajectory of an object such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such a ...
. In such cases, one refers to the system as a
flow Flow may refer to: Science and technology * Fluid flow, the motion of a gas or liquid * Flow (geomorphology), a type of mass wasting or slope movement in geomorphology * Flow (mathematics), a group action of the real numbers on a set * Flow (psych ...
. (cf. Section on conjugacy below.) Negative iterates correspond to function inverses and their compositions. For example, is the normal inverse of , while is the inverse composed with itself, i.e. . Fractional negative iterates are defined analogously to fractional positive ones; for example, is defined such that , or, equivalently, such that .


Some formulas for fractional iteration

One of several methods of finding a series formula for fractional iteration, making use of a fixed point, is as follows. # First determine a fixed point for the function such that . # Define for all ''n'' belonging to the reals. This, in some ways, is the most natural extra condition to place upon the fractional iterates. # Expand around the fixed point ''a'' as a
Taylor series In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor se ...
, f^n(x) = f^n(a) + (x-a)\left.\fracf^n(x)\_ + \frac2\left.\fracf^n(x)\_ +\cdots # Expand out f^n(x) = f^n(a) + (x-a) f'(a)f'(f(a))f'(f^2(a))\cdots f'(f^(a)) + \cdots # Substitute in for , for any ''k'', f^n(x) = a + (x-a) f'(a)^n + \frac2(f''(a)f'(a)^)\left(1+f'(a)+\cdots+f'(a)^ \right)+\cdots # Make use of the
geometric progression In mathematics, a geometric progression, also known as a geometric sequence, is a sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed, non-zero number called the ''common ratio''. For e ...
to simplify terms, f^n(x) = a + (x-a) f'(a)^n + \frac2(f''(a)f'(a)^)\frac+\cdots There is a special case when , f^n(x) = x + \frac2(n f''(a))+ \frac6\left(\fracn(n-1) f''(a)^2 + n f(a)\right)+\cdots This can be carried on indefinitely, although inefficiently, as the latter terms become increasingly complicated. A more systematic procedure is outlined in the following section on Conjugacy.


Example 1

For example, setting gives the fixed point , so the above formula terminates to just f^n(x)=\frac + \left(x-\frac\right)C^n=C^nx+\fracD ~, which is trivial to check.


Example 2

Find the value of \sqrt^ where this is done ''n'' times (and possibly the interpolated values when ''n'' is not an integer). We have . A fixed point is . So set and expanded around the fixed point value of 2 is then an infinite series, \sqrt^ = f^n(1) = 2 - (\ln 2)^n + \frac - \cdots which, taking just the first three terms, is correct to the first decimal place when ''n'' is positive–cf.
Tetration In mathematics, tetration (or hyper-4) is an operation based on iterated, or repeated, exponentiation. There is no standard notation for tetration, though \uparrow \uparrow and the left-exponent ''xb'' are common. Under the definition as rep ...
: . (Using the other fixed point causes the series to diverge.) For , the series computes the inverse function .


Example 3

With the function , expand around the fixed point 1 to get the series f^n(x) = 1 + b^n(x-1) + \frac2b^(b^n-1)(x-1)^2 + \fracb^n (b^n-1)(b^n-2)(x-1)^3 + \cdots ~, which is simply the Taylor series of ''x''(''b''''n'' ) expanded around 1.


Conjugacy

If and are two iterated functions, and there exists a
homeomorphism In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomor ...
such that , then and are said to be topologically conjugate. Clearly, topological conjugacy is preserved under iteration, as . Thus, if one can solve for one iterated function system, one also has solutions for all topologically conjugate systems. For example, the tent map is topologically conjugate to the
logistic map The logistic map is a polynomial mapping (equivalently, recurrence relation) of degree 2, often referred to as an archetypal example of how complex, chaotic behaviour can arise from very simple non-linear dynamical equations. The map was popula ...
. As a special case, taking , one has the iteration of as :,   for any function . Making the substitution yields :,   a form known as the Abel equation. Even in the absence of a strict homeomorphism, near a fixed point, here taken to be at = 0, (0) = 0, one may often solve Schröder's equation for a function Ψ, which makes locally conjugate to a mere dilation, , that is :. Thus, its iteration orbit, or flow, under suitable provisions (e.g., ), amounts to the conjugate of the orbit of the monomial, :, where in this expression serves as a plain exponent: ''functional iteration has been reduced to multiplication!'' Here, however, the exponent no longer needs be integer or positive, and is a continuous "time" of evolution for the full orbit: the
monoid In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoids ...
of the Picard sequence (cf.
transformation semigroup In algebra, a transformation semigroup (or composition semigroup) is a collection of transformations ( functions from a set to itself) that is closed under function composition. If it includes the identity function, it is a monoid, called a transf ...
) has generalized to a full continuous group. This method (perturbative determination of the principal
eigenfunction In mathematics, an eigenfunction of a linear operator ''D'' defined on some function space is any non-zero function f in that space that, when acted upon by ''D'', is only multiplied by some scaling factor called an eigenvalue. As an equation, ...
Ψ, cf. Carleman matrix) is equivalent to the algorithm of the preceding section, albeit, in practice, more powerful and systematic.


Markov chains

If the function is linear and can be described by a stochastic matrix, that is, a matrix whose rows or columns sum to one, then the iterated system is known as a
Markov chain A Markov chain or Markov process is a stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event. Informally, this may be thought of as, "What happen ...
.


Examples

There are many chaotic maps. Well-known iterated functions include the
Mandelbrot set The Mandelbrot set () is the set of complex numbers c for which the function f_c(z)=z^2+c does not diverge to infinity when iterated from z=0, i.e., for which the sequence f_c(0), f_c(f_c(0)), etc., remains bounded in absolute value. This ...
and
iterated function systems In mathematics, iterated function systems (IFSs) are a method of constructing fractals; the resulting fractals are often self-similar. IFS fractals are more related to set theory than fractal geometry. They were introduced in 1981. IFS fractals, ...
. Ernst Schröder, in 1870, worked out special cases of the
logistic map The logistic map is a polynomial mapping (equivalently, recurrence relation) of degree 2, often referred to as an archetypal example of how complex, chaotic behaviour can arise from very simple non-linear dynamical equations. The map was popula ...
, such as the chaotic case , so that , hence . A nonchaotic case Schröder also illustrated with his method, , yielded , and hence . If is the action of a group element on a set, then the iterated function corresponds to a
free group In mathematics, the free group ''F'S'' over a given set ''S'' consists of all words that can be built from members of ''S'', considering two words to be different unless their equality follows from the group axioms (e.g. ''st'' = ''suu''− ...
. Most functions do not have explicit general
closed-form expression In mathematics, a closed-form expression is a mathematical expression that uses a finite number of standard operations. It may contain constants, variables, certain well-known operations (e.g., + − × ÷), and functions (e.g., ''n''th ro ...
s for the ''n''-th iterate. The table below lists some that do. Note that all these expressions are valid even for non-integer and negative ''n'', as well as non-negative integer ''n''. Note: these two special cases of are the only cases that have a closed-form solution. Choosing ''b'' = 2 = –''a'' and ''b'' = 4 = –''a'', respectively, further reduces them to the nonchaotic and chaotic logistic cases discussed prior to the table. Some of these examples are related among themselves by simple conjugacies. A few further examples, essentially amounting to simple conjugacies of Schröder's examples can be found in ref.


Means of study

Iterated functions can be studied with the
Artin–Mazur zeta function In mathematics, the Artin–Mazur zeta function, named after Michael Artin and Barry Mazur, is a function that is used for studying the iterated functions that occur in dynamical systems and fractals. It is defined from a given function f as th ...
and with transfer operators.


In computer science

In
computer science Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to practical disciplines (includin ...
, iterated functions occur as a special case of recursive functions, which in turn anchor the study of such broad topics as
lambda calculus Lambda calculus (also written as ''λ''-calculus) is a formal system in mathematical logic for expressing computation based on function abstraction and application using variable binding and substitution. It is a universal model of computation t ...
, or narrower ones, such as the denotational semantics of computer programs.


Definitions in terms of iterated functions

Two important functionals can be defined in terms of iterated functions. These are
summation In mathematics, summation is the addition of a sequence of any kind of numbers, called ''addends'' or ''summands''; the result is their ''sum'' or ''total''. Beside numbers, other types of values can be summed as well: functions, vectors, m ...
: : \left\ \equiv \left( \ \rightarrow \\right)^ \ and the equivalent product: : \left\ \equiv \left( \ \rightarrow \\right)^ \


Functional derivative

The
functional derivative In the calculus of variations, a field of mathematical analysis, the functional derivative (or variational derivative) relates a change in a functional (a functional in this sense is a function that acts on functions) to a change in a function on ...
of an iterated function is given by the recursive formula: :\frac = f'( f^(x) ) \frac + \delta( f^(x) - y )


Lie's data transport equation

Iterated functions crop up in the series expansion of combined functions, such as . Given the iteration velocity, or
beta function (physics) In theoretical physics, specifically quantum field theory, a beta function, ''β(g)'', encodes the dependence of a coupling parameter, ''g'', on the energy scale, ''μ'', of a given physical process described by quantum field theory. It is d ...
, :v(x) = \left. \frac \_ for the th iterate of the function , we have : g(f(x)) = \exp\left v(x) \frac \rightg(x). For example, for rigid advection, if , then . Consequently, , action by a plain
shift operator In mathematics, and in particular functional analysis, the shift operator also known as translation operator is an operator that takes a function to its translation . In time series analysis, the shift operator is called the lag operator. Shift ...
. Conversely, one may specify given an arbitrary , through the generic Abel equation discussed above, : f(x) = h^(h(x)+1) , where : h(x) = \int \frac \, dx . This is evident by noting that :f^n(x)=h^(h(x)+n)~. For continuous iteration index , then, now written as a subscript, this amounts to Lie's celebrated exponential realization of a continuous group, :e^ g(x)= g(h^(h(x )+t))= g(f_t(x)). The initial flow velocity suffices to determine the entire flow, given this exponential realization which automatically provides the general solution to the ''translation functional equation'',Aczel, J. (2006), ''Lectures on Functional Equations and Their Applications'' (Dover Books on Mathematics, 2006), Ch. 6, . :f_t(f_\tau (x))=f_ (x) ~.


See also

* Irrational rotation * Iterated function system *
Iterative method In computational mathematics, an iterative method is a mathematical procedure that uses an initial value to generate a sequence of improving approximate solutions for a class of problems, in which the ''n''-th approximation is derived from the pre ...
* Rotation number *
Sarkovskii's theorem In mathematics, Sharkovskii's theorem, named after Oleksandr Mykolaiovych Sharkovskii, who published it in 1964, is a result about discrete dynamical systems. One of the implications of the theorem is that if a discrete dynamical system on the ...
*
Fractional calculus Fractional calculus is a branch of mathematical analysis that studies the several different possibilities of defining real number powers or complex number powers of the differentiation operator D :D f(x) = \frac f(x)\,, and of the integration o ...
*
Recurrence relation In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a paramete ...
* Schröder's equation * Functional square root * Abel function *
Infinite compositions of analytic functions In mathematics, infinite Function composition, compositions of analytic functions (ICAF) offer alternative formulations of Generalized continued fraction, analytic continued fractions, series (mathematics), series, product (mathematics), products a ...
* Flow (mathematics) *
Tetration In mathematics, tetration (or hyper-4) is an operation based on iterated, or repeated, exponentiation. There is no standard notation for tetration, though \uparrow \uparrow and the left-exponent ''xb'' are common. Under the definition as rep ...
*
Functional equation In mathematics, a functional equation is, in the broadest meaning, an equation in which one or several functions appear as unknowns. So, differential equations and integral equations are functional equations. However, a more restricted mea ...


Notes


References


External Links

{{cite web , url=https://www.researchgate.net/publication/362010262 , author-link=John Gill (climber) , first=John , last=Gill , title=A Primer on the Elementary Theory of Infinite Compositions of Complex Functions , publisher=Colorado State University , date=January 2017 Dynamical systems Fractals Sequences and series Fixed points (mathematics) Functions and mappings Functional equations