Abel Function
The Abel equation, named after Niels Henrik Abel, is a type of functional equation of the form :f(h(x)) = h(x + 1) or :\alpha(f(x)) = \alpha(x)+1. The forms are equivalent when is invertible. or control the iteration of . Equivalence The second equation can be written :\alpha^(\alpha(f(x))) = \alpha^(\alpha(x)+1)\, . Taking , the equation can be written ::f(\alpha^(y)) = \alpha^(y+1)\, . For a known function , a problem is to solve the functional equation for the function , possibly satisfying additional requirements, such as . The change of variables , for a real parameter , brings Abel's equation into the celebrated Schröder's equation, . The further change into Böttcher's equation, . The Abel equation is a special case of (and easily generalizes to) the translation equation, :\omega( \omega(x,u),v)=\omega(x,u+v) ~, e.g., for \omega(x,1) = f(x), :\omega(x,u) = \alpha^(\alpha(x)+u). (Observe .) The Abel function further provides the canonical coordi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abel Equation Of The First Kind
In mathematics, an Abel equation of the first kind, named after Niels Henrik Abel, is any ordinary differential equation that is cubic in the unknown function. In other words, it is an equation of the form :y'=f_3(x)y^3+f_2(x)y^2+f_1(x)y+f_0(x) \, where f_3(x)\neq 0. If f_3(x)=0 and f_0(x)=0, or f_2(x)=0 and f_0(x)=0, the equation reduces to a Bernoulli equation, while if f_3(x) = 0 the equation reduces to a Riccati equation In mathematics, a Riccati equation in the narrowest sense is any first-order ordinary differential equation that is quadratic in the unknown function. In other words, it is an equation of the form : y'(x) = q_0(x) + q_1(x) \, y(x) + q_2(x) \, y^2( .... Properties The substitution y=\dfrac brings the Abel equation of the first kind to the " Abel equation of the second kind" of the form :uu'=-f_0(x)u^3-f_1(x)u^2-f_2(x)u-f_3(x). \, The substitution : \begin \xi & = \int f_3(x)E^2~dx, \\ ptu & = \left(y+\dfrac\right)E^, \\ ptE & = \exp\left(\int\left(f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Studia Mathematica
''Studia Mathematica'' is a triannual peer-reviewed scientific journal of mathematics published by the Polish Academy of Sciences. Papers are written in English, French, German, or Russian, primarily covering functional analysis, abstract methods of mathematical analysis, and probability theory. The editor-in-chief is Adam Skalski. History The journal was established in 1929 by Stefan Banach and Hugo Steinhaus and its first editors were Banach, Steinhaus and Herman Auerbach. Due to the Second World War publication stopped after volume 9 (1940) and was not resumed until volume 10 in 1948. Abstracting and indexing The journal is abstracted and indexed in: *Current Contents/Physical, Chemical & Earth Sciences *MathSciNet *Science Citation Index *Scopus *Zentralblatt MATH According to the ''Journal Citation Reports'', the journal has a 2018 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Iterated Function
In mathematics, an iterated function is a function (that is, a function from some set to itself) which is obtained by composing another function with itself a certain number of times. The process of repeatedly applying the same function is called iteration. In this process, starting from some initial object, the result of applying a given function is fed again in the function as input, and this process is repeated. For example on the image on the right: :with the circle‑shaped symbol of function composition. Iterated functions are objects of study in computer science, fractals, dynamical systems, mathematics and renormalization group physics. Definition The formal definition of an iterated function on a set ''X'' follows. Let be a set and be a function. Defining as the ''n''-th iterate of (a notation introduced by Hans Heinrich Bürmann and John Frederick William Herschel), where ''n'' is a non-negative integer, by: f^0 ~ \stackrel ~ \operatorname_ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Infinite Compositions Of Analytic Functions
In mathematics, infinite compositions of analytic functions (ICAF) offer alternative formulations of analytic continued fractions, series, products and other infinite expansions, and the theory evolving from such compositions may shed light on the convergence/divergence of these expansions. Some functions can actually be expanded directly as infinite compositions. In addition, it is possible to use ICAF to evaluate solutions of fixed point equations involving infinite expansions. Complex dynamics offers another venue for iteration of systems of functions rather than a single function. For infinite compositions of a ''single function'' see Iterated function. For compositions of a finite number of functions, useful in fractal theory, see Iterated function system. Although the title of this article specifies analytic functions, there are results for more general functions of a complex variable as well. Notation There are several notations describing infinite compositions, includi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Functional Equation
In mathematics, a functional equation is, in the broadest meaning, an equation in which one or several functions appear as unknowns. So, differential equations and integral equations are functional equations. However, a more restricted meaning is often used, where a ''functional equation'' is an equation that relates several values of the same function. For example, the logarithm functions are essentially characterized by the ''logarithmic functional equation'' \log(xy)=\log(x) + \log(y). If the domain of the unknown function is supposed to be the natural numbers, the function is generally viewed as a sequence, and, in this case, a functional equation (in the narrower meaning) is called a recurrence relation. Thus the term ''functional equation'' is used mainly for real functions and complex functions. Moreover a smoothness condition is often assumed for the solutions, since without such a condition, most functional equations have very irregular solutions. For example, the ga ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Classification Of Fatou Components
In mathematics, Fatou components are components of the Fatou set. They were named after Pierre Fatou. Rational case If f is a rational function :f = \frac defined in the extended complex plane, and if it is a nonlinear function (degree > 1) : d(f) = \max(\deg(P),\, \deg(Q))\geq 2, then for a periodic component U of the Fatou set, exactly one of the following holds: # U contains an attracting periodic point # U is parabolic # U is a Siegel disc: a simply connected Fatou component on which ''f''(''z'') is analytically conjugate to a Euclidean rotation of the unit disc onto itself by an irrational rotation angle. # U is a Herman ring: a double connected Fatou component (an annulus) on which ''f''(''z'') is analytically conjugate to a Euclidean rotation of a round annulus, again by an irrational rotation angle. File:Julia-set_N_z3-1.png, Julia set (white) and Fatou set (dark red/green/blue) for f: z\mapsto z-\frac(z) with g: z \mapsto z^3-1 in the complex plane. Basilica Juli ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Power Series
In mathematics, a power series (in one variable) is an infinite series of the form \sum_^\infty a_n \left(x - c\right)^n = a_0 + a_1 (x - c) + a_2 (x - c)^2 + \dots where ''an'' represents the coefficient of the ''n''th term and ''c'' is a constant. Power series are useful in mathematical analysis, where they arise as Taylor series of infinitely differentiable functions. In fact, Borel's theorem implies that every power series is the Taylor series of some smooth function. In many situations, ''c'' (the ''center'' of the series) is equal to zero, for instance when considering a Maclaurin series. In such cases, the power series takes the simpler form \sum_^\infty a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots. Beyond their role in mathematical analysis, power series also occur in combinatorics as generating functions (a kind of formal power series) and in electronic engineering (under the name of the Z-transform). The familiar decimal notation for real numbers can also be viewed as an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Asymptotic Expansion
In mathematics, an asymptotic expansion, asymptotic series or Poincaré expansion (after Henri Poincaré) is a formal series of functions which has the property that truncating the series after a finite number of terms provides an approximation to a given function as the argument of the function tends towards a particular, often infinite, point. Investigations by revealed that the divergent part of an asymptotic expansion is latently meaningful, i.e. contains information about the exact value of the expanded function. The most common type of asymptotic expansion is a power series in either positive or negative powers. Methods of generating such expansions include the Euler–Maclaurin summation formula and integral transforms such as the Laplace and Mellin transforms. Repeated integration by parts will often lead to an asymptotic expansion. Since a '' convergent'' Taylor series fits the definition of asymptotic expansion as well, the phrase "asymptotic series" usually implies a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Iterated Function
In mathematics, an iterated function is a function (that is, a function from some set to itself) which is obtained by composing another function with itself a certain number of times. The process of repeatedly applying the same function is called iteration. In this process, starting from some initial object, the result of applying a given function is fed again in the function as input, and this process is repeated. For example on the image on the right: :with the circle‑shaped symbol of function composition. Iterated functions are objects of study in computer science, fractals, dynamical systems, mathematics and renormalization group physics. Definition The formal definition of an iterated function on a set ''X'' follows. Let be a set and be a function. Defining as the ''n''-th iterate of (a notation introduced by Hans Heinrich Bürmann and John Frederick William Herschel), where ''n'' is a non-negative integer, by: f^0 ~ \stackrel ~ \operatorname_ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q'', there could be other scenarios where ''P'' is true and ''Q'' is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tetration
In mathematics, tetration (or hyper-4) is an operation based on iterated, or repeated, exponentiation. There is no standard notation for tetration, though \uparrow \uparrow and the left-exponent ''xb'' are common. Under the definition as repeated exponentiation, means , where ' copies of ' are iterated via exponentiation, right-to-left, i.e. the application of exponentiation n-1 times. ' is called the "height" of the function, while ' is called the "base," analogous to exponentiation. It would be read as "the th tetration of ". It is the next hyperoperation after exponentiation, but before pentation. The word was coined by Reuben Louis Goodstein from tetra- (four) and iteration. Tetration is also defined recursively as : := \begin 1 &\textn=0, \\ a^ &\textn>0, \end allowing for attempts to extend tetration to non-natural numbers such as real and complex numbers. The two inverses of tetration are called super-root and super-logarithm, analogous to the nth root and the log ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Journal Für Die Reine Und Angewandte Mathematik
''Crelle's Journal'', or just ''Crelle'', is the common name for a mathematics journal, the ''Journal für die reine und angewandte Mathematik'' (in English: ''Journal for Pure and Applied Mathematics''). History The journal was founded by August Leopold Crelle (Berlin) in 1826 and edited by him until his death in 1855. It was one of the first major mathematical journals that was not a proceedings of an academy. It has published many notable papers, including works of Niels Henrik Abel, Georg Cantor, Gotthold Eisenstein, Carl Friedrich Gauss and Otto Hesse. It was edited by Carl Wilhelm Borchardt from 1856 to 1880, during which time it was known as ''Borchardt's Journal''. The current editor-in-chief is Rainer Weissauer (Ruprecht-Karls-Universität Heidelberg) Past editors * 1826–1856 August Leopold Crelle * 1856–1880 Carl Wilhelm Borchardt * 1881–1888 Leopold Kronecker, Karl Weierstrass * 1889–1892 Leopold Kronecker * 1892–1902 Lazarus Fuchs * 1903–1928 Kurt Hens ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |