Character Variety
   HOME
*





Character Variety
In the mathematics of moduli theory, given an algebraic, reductive, Lie group G and a finitely generated group \pi, the G-''character variety of'' \pi is a space of equivalence classes of group homomorphisms from \pi to G: :\mathfrak(\pi,G)=\operatorname(\pi,G)/\!\sim \, . More precisely, G acts on \operatorname(\pi,G) by conjugation, and two homomorphisms are defined to be equivalent (denoted \sim) if and only if their orbit closures intersect. This is the weakest equivalence relation on the set of conjugation orbits, \operatorname(\pi,G)/G, that yields a Hausdorff space. Formulation Formally, and when the reductive group is defined over the complex numbers \Complex, the G-character variety is the spectrum of prime ideals of the ring of invariants (i.e., the affine GIT quotient). : \Complex operatorname(\pi,G)G . Here more generally one can consider algebraically closed fields of prime characteristic. In this generality, character varieties are only algebraic sets and ar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nilradical Of A Ring
In algebra, the nilradical of a commutative ring is the ideal consisting of the nilpotent elements: :\mathfrak_R = \lbrace f \in R \mid f^m=0 \text m\in\mathbb_\rbrace. In the non-commutative ring case the same definition does not always work. This has resulted in several radicals generalizing the commutative case in distinct ways; see the article Radical of a ring for more on this. The nilradical of a Lie algebra is similarly defined for Lie algebras. Commutative rings The nilradical of a commutative ring is the set of all nilpotent elements in the ring, or equivalently the radical of the zero ideal. This is an ideal because the sum of any two nilpotent elements is nilpotent (by the binomial formula), and the product of any element with a nilpotent element is nilpotent (by commutativity). It can also be characterized as the intersection of all the prime ideals of the ring (in fact, it is the intersection of all minimal prime ideals). A ring is called reduced if it has ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Holonomy
In differential geometry Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multili ..., the holonomy of a connection (mathematics), connection on a smooth manifold is a general geometrical consequence of the curvature of the connection measuring the extent to which parallel transport around closed loops fails to preserve the geometrical data being transported. For flat connections, the associated holonomy is a type of monodromy and is an inherently global notion. For curved connections, holonomy has nontrivial local and global features. Any kind of connection on a manifold gives rise, through its parallel transport maps, to some notion of holonomy. The most common forms of holonomy are for connections possessing some kind of symmetry. Important examples include: holonomy of the Levi-Civit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Higgs Bundle
In mathematics, a Higgs bundle is a pair (E,\varphi) consisting of a holomorphic vector bundle ''E'' and a Higgs field \varphi, a holomorphic 1-form taking values in the bundle of endomorphisms of ''E'' such that \varphi \wedge \varphi=0. Such pairs were introduced by , who named the field \varphi after Peter Higgs because of an analogy with Higgs bosons. The term 'Higgs bundle', and the condition \varphi \wedge \varphi=0 (which is vacuous in Hitchin's original set-up on Riemann surfaces) was introduced later by Carlos Simpson. A Higgs bundle can be thought of as a "simplified version" of a flat holomorphic connection on a holomorphic vector bundle, where the derivative is scaled to zero. The nonabelian Hodge correspondence says that, under suitable stability conditions, the category of flat holomorphic connections on a smooth, projective complex algebraic variety, the category of representations of the fundamental group of the variety, and the category of Higgs bundles over thi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector Bundle
In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to every point x of the space X we associate (or "attach") a vector space V(x) in such a way that these vector spaces fit together to form another space of the same kind as X (e.g. a topological space, manifold, or algebraic variety), which is then called a vector bundle over X. The simplest example is the case that the family of vector spaces is constant, i.e., there is a fixed vector space V such that V(x)=V for all x in X: in this case there is a copy of V for each x in X and these copies fit together to form the vector bundle X\times V over X. Such vector bundles are said to be ''trivial''. A more complicated (and prototypical) class of examples are the tangent bundles of smooth (or differentiable) manifolds: to every point of such a manifold w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Principal Bundle
In mathematics, a principal bundle is a mathematical object that formalizes some of the essential features of the Cartesian product X \times G of a space X with a group G. In the same way as with the Cartesian product, a principal bundle P is equipped with # An action of G on P, analogous to (x, g)h = (x, gh) for a product space. # A projection onto X. For a product space, this is just the projection onto the first factor, (x,g) \mapsto x. Unlike a product space, principal bundles lack a preferred choice of identity cross-section; they have no preferred analog of (x,e). Likewise, there is not generally a projection onto G generalizing the projection onto the second factor, X \times G \to G that exists for the Cartesian product. They may also have a complicated topology that prevents them from being realized as a product space even if a number of arbitrary choices are made to try to define such a structure by defining it on smaller pieces of the space. A common example of a principal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Free Group
In mathematics, the free group ''F''''S'' over a given set ''S'' consists of all words that can be built from members of ''S'', considering two words to be different unless their equality follows from the group axioms (e.g. ''st'' = ''suu''−1''t'', but ''s'' ≠ ''t''−1 for ''s'',''t'',''u'' ∈ ''S''). The members of ''S'' are called generators of ''F''''S'', and the number of generators is the rank of the free group. An arbitrary group ''G'' is called free if it is isomorphic to ''F''''S'' for some subset ''S'' of ''G'', that is, if there is a subset ''S'' of ''G'' such that every element of ''G'' can be written in exactly one way as a product of finitely many elements of ''S'' and their inverses (disregarding trivial variations such as ''st'' = ''suu''−1''t''). A related but different notion is a free abelian group; both notions are particular instances of a free object from universal algebra. As such, free groups are defined by their universal property. History Free ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Claudio Procesi
Claudio Procesi (born 31 March 1941 in Rome) is an Italian mathematician, known for works in algebra and representation theory. Career Procesi studied at the Sapienza University of Rome, where he received his degree (Laurea) in 1963. In 1966 he graduated from the University of Chicago advised by Israel Herstein, with a thesis titled "On rings with polynomial identities". From 1966 he was assistant professor at the University of Rome, 1970 associate professor at the University of Lecce, and 1971 at the University of Pisa. From 1973 he was full professor in Pisa and in 1975 ordinary Professor at the Sapienza University of Rome. He was a visiting scientist at Columbia University (1969–1970), the University of California, Los Angeles (1973/74), at the Instituto Nacional de Matemática Pura e Aplicada, at the Massachusetts Institute of Technology (1991), at the University of Grenoble, at Brandeis University (1981/2), at the University of Texas at Austin (1984), the Institute for Ad ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Peter Shalen
Peter B. Shalen (born c. 1946) is an American mathematician, working primarily in low-dimensional topology. He is the "S" in JSJ decomposition. Life He graduated from Stuyvesant High School in 1962, and went on to earn a B.A. from Harvard College in 1966 and his Ph.D. from Harvard University in 1972. After posts at Columbia University, Rice University, and the Courant Institute, he joined the faculty of the University of Illinois at Chicago. Shalen was a Sloan Foundation Research Fellow in mathematics (1977—1979). In 1986 he was an invited speaker at the International Congress of Mathematicians in Berkeley, California. He was elected as a member of the 2017 class of Fellows of the American Mathematical Society "for contributions to three-dimensional topology and for exposition".2017 Class of the Fellows of the AMS

[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Marc Culler
Marc Edward Culler (born November 22, 1953) is an American mathematician who works in geometric group theory and low-dimensional topology. A native Californian, Culler did his undergraduate work at the University of California at Santa Barbara and his graduate work at University of California, Berkeley, Berkeley where he graduated in 1978. He is now at the University of Illinois at Chicago. Culler is the son of Glen Culler, Glen Jacob Culler who was an important early innovator in the development of the Internet. Work Culler specializes in group theory, low dimensional topology, 3-manifolds, and hyperbolic geometry. Culler frequently collaborates with Peter Shalen and they have co-authored many papers. Culler and Shalen did joint work that related properties of representation varieties of hyperbolic 3-manifold groups to decompositions of 3-manifolds. In particular, Culler and Shalen used the Bass–Serre theory, applied to the function field of the SL(2,C)-Character variety of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Felix Klein
Christian Felix Klein (; 25 April 1849 – 22 June 1925) was a German mathematician and mathematics educator, known for his work with group theory, complex analysis, non-Euclidean geometry, and on the associations between geometry and group theory. His 1872 Erlangen program, classifying geometries by their basic symmetry groups, was an influential synthesis of much of the mathematics of the time. Life Felix Klein was born on 25 April 1849 in Düsseldorf, to Prussian parents. His father, Caspar Klein (1809–1889), was a Prussian government official's secretary stationed in the Rhine Province. His mother was Sophie Elise Klein (1819–1890, née Kayser). He attended the Gymnasium in Düsseldorf, then studied mathematics and physics at the University of Bonn, 1865–1866, intending to become a physicist. At that time, Julius Plücker had Bonn's professorship of mathematics and experimental physics, but by the time Klein became his assistant, in 1866, Plücker's interest wa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Robert Fricke
Karl Emanuel Robert Fricke (24 September 1861 – 18 July 1930) was a German mathematician, known for his work in complex analysis, especially on elliptic, modular and automorphic functions. He was one of the main collaborators of Felix Klein, with whom he produced two classic, two-volume monographs on elliptic modular functions and automorphic functions. In 1893 in Chicago, his paper ''Die Theorie der automorphen Functionen und die Arithmetik'' was read (but not by Fricke) at the International Mathematical Congress held in connection with the World's Columbian Exposition. From 1894 to 1930 Fricke was professor of Higher Mathematics at the Technische Hochschule Carolo-Wilhelmina in Braunschweig. See also *Fricke involution In mathematics, a Fricke involution is the involution of the modular curve ''X''0(''N'') given by τ → –1/''N''τ. It is named after Robert Fricke. The Fricke involution also acts on other objects associated with the modular curve, suc .. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]