Nilradical Of A Ring
   HOME

TheInfoList



OR:

In
algebra Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary a ...
, the nilradical of a
commutative ring In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not sp ...
is the
ideal Ideal may refer to: Philosophy * Ideal (ethics), values that one actively pursues as goals * Platonic ideal, a philosophical idea of trueness of form, associated with Plato Mathematics * Ideal (ring theory), special subsets of a ring considere ...
consisting of the
nilpotent element In mathematics, an element x of a ring R is called nilpotent if there exists some positive integer n, called the index (or sometimes the degree), such that x^n=0. The term was introduced by Benjamin Peirce in the context of his work on the cla ...
s: :\mathfrak_R = \lbrace f \in R \mid f^m=0 \text m\in\mathbb_\rbrace. In the
non-commutative ring In mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist ''a'' and ''b'' in the ring such that ''ab'' and ''ba'' are different. Equivalently, a ''noncommutative ring'' is a ring that is not a ...
case the same definition does not always work. This has resulted in several radicals generalizing the commutative case in distinct ways; see the article
Radical of a ring In ring theory, a branch of mathematics, a radical of a ring is an ideal of "not-good" elements of the ring. The first example of a radical was the nilradical introduced by , based on a suggestion of . In the next few years several other radicals ...
for more on this. The
nilradical of a Lie algebra In algebra, the nilradical of a Lie algebra is a nilpotent ideal, which is as large as possible. The nilradical \mathfrak(\mathfrak g) of a finite-dimensional Lie algebra \mathfrak is its maximal nilpotent ideal, which exists because the sum of an ...
is similarly defined for
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an Binary operation, operation called the Lie bracket, an Alternating multilinear map, alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow ...
s.


Commutative rings

The nilradical of a commutative ring is the set of all
nilpotent element In mathematics, an element x of a ring R is called nilpotent if there exists some positive integer n, called the index (or sometimes the degree), such that x^n=0. The term was introduced by Benjamin Peirce in the context of his work on the cla ...
s in the
ring Ring may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell :(hence) to initiate a telephone connection Arts, entertainment and media Film and ...
, or equivalently the
radical Radical may refer to: Politics and ideology Politics *Radical politics, the political intent of fundamental societal change *Radicalism (historical), the Radical Movement that began in late 18th century Britain and spread to continental Europe and ...
of the
zero ideal In mathematics, a zero element is one of several generalizations of the number zero to other algebraic structures. These alternate meanings may or may not reduce to the same thing, depending on the context. Additive identities An additive identi ...
. This is an ideal because the sum of any two nilpotent elements is nilpotent (by the
binomial formula In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the polynomial into a sum involving terms of the form , where the ...
), and the product of any element with a nilpotent element is nilpotent (by commutativity). It can also be characterized as the intersection of all the
prime ideal In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together with ...
s of the ring (in fact, it is the intersection of all
minimal prime ideal In mathematics, especially in commutative algebra, certain prime ideals called minimal prime ideals play an important role in understanding rings and modules. The notion of height and Krull's principal ideal theorem use minimal primes. Definitio ...
s). A ring is called reduced if it has no nonzero nilpotent. Thus, a ring is reduced
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is bicondi ...
its nilradical is zero. If ''R'' is an arbitrary commutative ring, then the
quotient In arithmetic, a quotient (from lat, quotiens 'how many times', pronounced ) is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics, and is commonly referred to as the integer part of a ...
of it by the nilradical is a reduced ring and is denoted by R_. Since every
maximal ideal In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals cont ...
is a prime ideal, the
Jacobson radical In mathematics, more specifically ring theory, the Jacobson radical of a ring R is the ideal consisting of those elements in R that annihilate all simple right R-modules. It happens that substituting "left" in place of "right" in the definition yie ...
— which is the intersection of maximal ideals — must contain the nilradical. A ring ''R'' is called a
Jacobson ring In algebra, a Hilbert ring or a Jacobson ring is a ring such that every prime ideal is an intersection of primitive ideals. For commutative rings primitive ideals are the same as maximal ideals so in this case a Jacobson ring is one in which ever ...
if the nilradical and Jacobson radical of ''R''/''P'' coincide for all prime ideals ''P'' of ''R''. An
Artinian ring In mathematics, specifically abstract algebra, an Artinian ring (sometimes Artin ring) is a ring that satisfies the descending chain condition on (one-sided) ideals; that is, there is no infinite descending sequence of ideals. Artinian rings are na ...
is Jacobson, and its nilradical is the maximal
nilpotent ideal In mathematics, more specifically ring theory, an ideal ''I'' of a ring ''R'' is said to be a nilpotent ideal if there exists a natural number ''k'' such that ''I'k'' = 0. By ''I'k'', it is meant the additive subgroup generated by the set of ...
of the ring. In general, if the nilradical is finitely generated (e.g., the ring is
Noetherian In mathematics, the adjective Noetherian is used to describe objects that satisfy an ascending or descending chain condition on certain kinds of subobjects, meaning that certain ascending or descending sequences of subobjects must have finite lengt ...
), then it is
nilpotent In mathematics, an element x of a ring R is called nilpotent if there exists some positive integer n, called the index (or sometimes the degree), such that x^n=0. The term was introduced by Benjamin Peirce in the context of his work on the class ...
.


Noncommutative rings

For noncommutative rings, there are several analogues of the nilradical. The lower nilradical (or
Baer Baer (or Bär, from german: bear, links=no) or Van Baer is a surname. Notable people with the surname include: Baer * Alan Baer, American tuba player * Arthur "Bugs" Baer (1886–1969), American journalist and humorist * Buddy Baer (1915–198 ...
–McCoy radical, or prime radical) is the analogue of the radical of the zero ideal and is defined as the intersection of the prime ideals of the ring. The analogue of the set of all nilpotent elements is the upper nilradical and is defined as the ideal generated by all nil ideals of the ring, which is itself a nil ideal. The set of all nilpotent elements itself need not be an ideal (or even a
subgroup In group theory, a branch of mathematics, given a group ''G'' under a binary operation ∗, a subset ''H'' of ''G'' is called a subgroup of ''G'' if ''H'' also forms a group under the operation ∗. More precisely, ''H'' is a subgroup ...
), so the upper nilradical can be much smaller than this set. The Levitzki radical is in between and is defined as the largest locally nilpotent ideal. As in the commutative case, when the ring is Artinian, the Levitzki radical is nilpotent and so is the unique largest nilpotent ideal. Indeed, if the ring is merely Noetherian, then the lower, upper, and Levitzki radical are nilpotent and coincide, allowing the nilradical of any Noetherian ring to be defined as the unique largest (left, right, or two-sided) nilpotent ideal of the ring.


References

* Eisenbud, David, "Commutative Algebra with a View Toward Algebraic Geometry", Graduate Texts in Mathematics, 150, Springer-Verlag, 1995, . * Commutative algebra Ideals (ring theory)


Notes

{{reflist, group=Note