Radical Of An Ideal
In ring theory, a branch of mathematics, the radical of an ideal I of a commutative ring is another ideal defined by the property that an element x is in the radical if and only if some power of x is in I. Taking the radical of an ideal is called ''radicalization''. A radical ideal (or semiprime ideal) is an ideal that is equal to its radical. The radical of a primary ideal is a prime ideal. This concept is generalized to non-commutative rings in the Semiprime ring article. Definition The radical of an ideal I in a commutative ring R, denoted by \operatorname(I) or \sqrt, is defined as :\sqrt = \left\, (note that I \subset \sqrt). Intuitively, \sqrt is obtained by taking all roots of elements of I within the ring R. Equivalently, \sqrt is the preimage of the ideal of nilpotent elements (the nilradical) of the quotient ring R/I (via the natural map \pi\colon R\to R/I). The latter proves that \sqrt is an ideal.Here is a direct proof that \sqrt is an ideal. Start with a,b\in\sqrt ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ring Theory
In algebra, ring theory is the study of rings— algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings (group rings, division rings, universal enveloping algebras), as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological algebra, homological properties and Polynomial identity ring, polynomial identities. Commutative rings are much better understood than noncommutative ones. Algebraic geometry and algebraic number theory, which provide many natural examples of commutative rings, have driven much of the development of commutative ring theory, which is now, under the name of ''commutative algebra'', a major area of modern mathematics. Because these three fields (algebraic geometry, alge ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Noetherian Ring
In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noetherian respectively. That is, every increasing sequence I_1\subseteq I_2 \subseteq I_3 \subseteq \cdots of left (or right) ideals has a largest element; that is, there exists an such that: I_=I_=\cdots. Equivalently, a ring is left-Noetherian (resp. right-Noetherian) if every left ideal (resp. right-ideal) is finitely generated. A ring is Noetherian if it is both left- and right-Noetherian. Noetherian rings are fundamental in both commutative and noncommutative ring theory since many rings that are encountered in mathematics are Noetherian (in particular the ring of integers, polynomial rings, and rings of algebraic integers in number fields), and many general theorems on rings rely heavily on Noetherian property (for example, the Laskerâ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Field (mathematics)
In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as fields of rational functions, algebraic function fields, algebraic number fields, and ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many elements. The relation of two fields is expressed by the notion of a field extension. Galois theory, initiated by Évariste Galois in the 1830s, is devoted to understanding the symmetries of field extensions. Among other results, thi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ring Homomorphism
In ring theory, a branch of abstract algebra, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if ''R'' and ''S'' are rings, then a ring homomorphism is a function such that ''f'' is: :addition preserving: ::f(a+b)=f(a)+f(b) for all ''a'' and ''b'' in ''R'', :multiplication preserving: ::f(ab)=f(a)f(b) for all ''a'' and ''b'' in ''R'', :and unit (multiplicative identity) preserving: ::f(1_R)=1_S. Additive inverses and the additive identity are part of the structure too, but it is not necessary to require explicitly that they too are respected, because these conditions are consequences of the three conditions above. If in addition ''f'' is a bijection, then its inverse ''f''−1 is also a ring homomorphism. In this case, ''f'' is called a ring isomorphism, and the rings ''R'' and ''S'' are called ''isomorphic''. From the standpoint of ring theory, isomorphic rings cannot be distinguished. If ''R'' and ''S'' are rngs, then the cor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kernel (algebra)
In algebra, the kernel of a homomorphism (function that preserves the structure) is generally the inverse image of 0 (except for groups whose operation is denoted multiplicatively, where the kernel is the inverse image of 1). An important special case is the kernel of a linear map. The kernel of a matrix, also called the ''null space'', is the kernel of the linear map defined by the matrix. The kernel of a homomorphism is reduced to 0 (or 1) if and only if the homomorphism is injective, that is if the inverse image of every element consists of a single element. This means that the kernel can be viewed as a measure of the degree to which the homomorphism fails to be injective.See and . For some types of structure, such as abelian groups and vector spaces, the possible kernels are exactly the substructures of the same type. This is not always the case, and, sometimes, the possible kernels have received a special name, such as normal subgroup for groups and two-sided ideals for r ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Maximal Ideal
In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals contained between ''I'' and ''R''. Maximal ideals are important because the quotients of rings by maximal ideals are simple rings, and in the special case of unital commutative rings they are also fields. In noncommutative ring theory, a maximal right ideal is defined analogously as being a maximal element in the poset of proper right ideals, and similarly, a maximal left ideal is defined to be a maximal element of the poset of proper left ideals. Since a one sided maximal ideal ''A'' is not necessarily two-sided, the quotient ''R''/''A'' is not necessarily a ring, but it is a simple module over ''R''. If ''R'' has a unique maximal right ideal, then ''R'' is known as a local ring, and the maximal right ideal is also the unique maximal le ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jacobson Radical
In mathematics, more specifically ring theory, the Jacobson radical of a ring R is the ideal consisting of those elements in R that annihilate all simple right R-modules. It happens that substituting "left" in place of "right" in the definition yields the same ideal, and so the notion is left-right symmetric. The Jacobson radical of a ring is frequently denoted by J(R) or \operatorname(R); the former notation will be preferred in this article, because it avoids confusion with other radicals of a ring. The Jacobson radical is named after Nathan Jacobson, who was the first to study it for arbitrary rings in . The Jacobson radical of a ring has numerous internal characterizations, including a few definitions that successfully extend the notion to rings without unity. The radical of a module extends the definition of the Jacobson radical to include modules. The Jacobson radical plays a prominent role in many ring and module theoretic results, such as Nakayama's lemma. Definitio ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Intersection (set Theory)
In set theory, the intersection of two sets A and B, denoted by A \cap B, is the set containing all elements of A that also belong to B or equivalently, all elements of B that also belong to A. Notation and terminology Intersection is written using the symbol "\cap" between the terms; that is, in infix notation. For example: \\cap\=\ \\cap\=\varnothing \Z\cap\N=\N \\cap\N=\ The intersection of more than two sets (generalized intersection) can be written as: \bigcap_^n A_i which is similar to capital-sigma notation. For an explanation of the symbols used in this article, refer to the table of mathematical symbols. Definition The intersection of two sets A and B, denoted by A \cap B, is the set of all objects that are members of both the sets A and B. In symbols: A \cap B = \. That is, x is an element of the intersection A \cap B if and only if x is both an element of A and an element of B. For example: * The intersection of the sets and is . * The number 9 is in t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hilbert Nullstellensaz
David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician, one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many areas, including invariant theory, the calculus of variations, commutative algebra, algebraic number theory, the foundations of geometry, spectral theory of operators and its application to integral equations, mathematical physics, and the foundations of mathematics (particularly proof theory). Hilbert adopted and defended Georg Cantor's set theory and transfinite numbers. In 1900, he presented a collection of problems that set the course for much of the mathematical research of the 20th century. Hilbert and his students contributed significantly to establishing rigor and developed important tools used in modern mathematical physics. Hilbert is known as one of the founders of proof theory and mathematical logic. Life Early life and educ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Properties
Property is the ownership of land, resources, improvements or other tangible objects, or intellectual property. Property may also refer to: Mathematics * Property (mathematics) Philosophy and science * Property (philosophy), in philosophy and logic, an abstraction characterizing an object *Material properties, properties by which the benefits of one material versus another can be assessed *Chemical property, a material's properties that becomes evident during a chemical reaction *Physical property, any property that is measurable whose value describes a state of a physical system *Semantic property *Thermodynamic properties, in thermodynamics and materials science, intensive and extensive physical properties of substances *Mental property, a property of the mind studied by many sciences and parasciences Computer science * Property (programming), a type of class member in object-oriented programming * .properties, a Java Properties File to store program settings as name-value p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Radical Of An Integer
In number theory, the radical of a positive integer ''n'' is defined as the product of the distinct prime numbers dividing ''n''. Each prime factor of ''n'' occurs exactly once as a factor of this product: \displaystyle\mathrm(n)=\prod_p The radical plays a central role in the statement of the abc conjecture. Examples Radical numbers for the first few positive integers are : 1, 2, 3, 2, 5, 6, 7, 2, 3, 10, 11, 6, 13, 14, 15, 2, 17, 6, 19, 10, 21, 22, 23, 6, 5, 26, 3, 14, 29, 30, 31, 2, 33, 34, 35, 6, 37, 38, 39, 10, 41, 42, 43, 22, 15, 46, 47, 6, 7, 10, ... . For example, 504 = 2^3 \cdot 3^2 \cdot 7 and therefore \operatorname(504) = 2 \cdot 3 \cdot 7 = 42 Properties The function \mathrm is multiplicative (but not completely multiplicative). The radical of any integer n is the largest square-free divisor of n and so also described as the square-free kernel of n. There is no known polynomial-time algorithm for computing the square-free part of an integer. The definition i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Square-free Integer
In mathematics, a square-free integer (or squarefree integer) is an integer which is divisible by no square number other than 1. That is, its prime factorization has exactly one factor for each prime that appears in it. For example, is square-free, but is not, because 18 is divisible by . The smallest positive square-free numbers are Square-free factorization Every positive integer n can be factored in a unique way as n=\prod_^k q_i^i, where the q_i different from one are square-free integers that are pairwise coprime. This is called the ''square-free factorization'' of . To construct the square-free factorization, let n=\prod_^h p_j^ be the prime factorization of n, where the p_j are distinct prime numbers. Then the factors of the square-free factorization are defined as q_i=\prod_p_j. An integer is square-free if and only if q_i=1 for all i > 1. An integer greater than one is the kth power of another integer if and only if k is a divisor of all i such that q_i\neq 1. T ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |