Vector Bundle
In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to every point x of the space X we associate (or "attach") a vector space V(x) in such a way that these vector spaces fit together to form another space of the same kind as X (e.g. a topological space, manifold, or algebraic variety), which is then called a vector bundle over X. The simplest example is the case that the family of vector spaces is constant, i.e., there is a fixed vector space V such that V(x)=V for all x in X: in this case there is a copy of V for each x in X and these copies fit together to form the vector bundle X\times V over X. Such vector bundles are said to be ''trivial''. A more complicated (and prototypical) class of examples are the tangent bundles of smooth (or differentiable) manifolds: to every point of such a manifold w ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mobius Strip Illus
Moebius, Möbius or Mobius may refer to: People * August Ferdinand Möbius (1790–1868), German mathematician and astronomer * Theodor Möbius (1821–1890), German philologist * Karl Möbius (1825–1908), German zoologist and ecologist * Paul Julius Möbius (1853–1907), German neurologist * Dieter Moebius (1944–2015), German/Swiss musician * Mark Mobius (born 1936), emerging markets investments pioneer * Jean Giraud (1938–2012), French comics artist who used the pseudonym Mœbius Fictional characters * Mobius M. Mobius, a character in Marvel Comics * Mobius, also known as the Anti-Monitor, a supervillain in DC Comics Mathematics * Möbius energy, a particular knot energy * Möbius strip, an object with one surface and one edge * Möbius function, an important multiplicative function in number theory and combinatorics ** Möbius transform, transform involving the Möbius function ** Möbius inversion formula, in number theory * Möbius transformation, a particular rati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Continuous Function
In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value, known as '' discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Up until the 19th century, mathematicians largely relied on intuitive notions of continuity, and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are the mo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Čech Cocycle
Čech (feminine Čechová) is a Czech surname meaning Czech. It was used to distinguish an inhabitant of Bohemia from Slovaks, Moravians and other ethnic groups. Notable people with the surname include: * Dana Čechová (born 1983), Czech table tennis players * Donovan Cech (born 1974), South African rower * Eduard Čech (1893–1960), Czech mathematician * Filip Čech (born 1980), Czech ice hockey player * František Ringo Čech (born 1943), Czech musician and politician * Kateřina Čechová (born 1988), Czech athlete * Ludwig Czech (1870–1942), Czech-German-Jewish political figure * Marek Čech (other), multiple people * Martin Čech (1976–2007), Czech ice hockey player * Miya Cech (born 2004), American actress * Olga Čechová (1925–2010), Czech printmaker * Petr Čech (born 1982), Czech footballer * Petr Čech (hurdler) (born 1944), Czech hurdler * Svatopluk Čech (1846–1908), Czech writer, journalist and poet * Thomas Cech (born 1947), American chemist * ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mobius Transition Functions
Moebius, Möbius or Mobius may refer to: People * August Ferdinand Möbius (1790–1868), German mathematician and astronomer * Theodor Möbius (1821–1890), German philologist * Karl Möbius (1825–1908), German zoologist and ecologist * Paul Julius Möbius (1853–1907), German neurologist * Dieter Moebius (1944–2015), German/Swiss musician * Mark Mobius (born 1936), emerging markets investments pioneer * Jean Giraud (1938–2012), French comics artist who used the pseudonym Mœbius Fictional characters * Mobius M. Mobius, a character in Marvel Comics * Mobius, also known as the Anti-Monitor, a supervillain in DC Comics Mathematics * Möbius energy, a particular knot energy * Möbius strip, an object with one surface and one edge * Möbius function, an important multiplicative function in number theory and combinatorics ** Möbius transform, transform involving the Möbius function ** Möbius inversion formula, in number theory * Möbius transformation, a particular ration ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Transition Functions In statistics and probability theory, the conditional probability distribution function controlling the transitions of a stochastic process
{{mathdab ...
In mathematics, a transition function may refer to: * a transition map between two charts of an atlas of a manifold or other topological space * the function that defines the transitions of a state transition system in computing, which may refer more specifically to a ** Turing machine, ** finite-state machine, or ** cellular automaton * a stochastic kernel In probability theory, a Markov kernel (also known as a stochastic kernel or probability kernel) is a map that in the general theory of Markov processes plays the role that the transition matrix does in the theory of Markov processes with a finite ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cartesian Product
In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is : A\times B = \. A table can be created by taking the Cartesian product of a set of rows and a set of columns. If the Cartesian product is taken, the cells of the table contain ordered pairs of the form . One can similarly define the Cartesian product of ''n'' sets, also known as an ''n''-fold Cartesian product, which can be represented by an ''n''-dimensional array, where each element is an ''n''-tuple. An ordered pair is a 2-tuple or couple. More generally still, one can define the Cartesian product of an indexed family of sets. The Cartesian product is named after René Descartes, whose formulation of analytic geometry gave rise to the concept, which is further generalized in terms of direct product. Examples A deck of cards An ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Line Bundle
In mathematics, a line bundle expresses the concept of a line that varies from point to point of a space. For example, a curve in the plane having a tangent line at each point determines a varying line: the ''tangent bundle'' is a way of organising these. More formally, in algebraic topology and differential topology, a line bundle is defined as a ''vector bundle'' of rank 1. Line bundles are specified by choosing a one-dimensional vector space for each point of the space in a continuous manner. In topological applications, this vector space is usually real or complex. The two cases display fundamentally different behavior because of the different topological properties of real and complex vector spaces: If the origin is removed from the real line, then the result is the set of 1×1 invertible real matrices, which is homotopy-equivalent to a discrete two-point space by contracting the positive and negative reals each to a point; whereas removing the origin from the complex plane ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Locally Connected Space
In topology and other branches of mathematics, a topological space ''X'' is locally connected if every point admits a neighbourhood basis consisting entirely of open, connected sets. Background Throughout the history of topology, connectedness and compactness have been two of the most widely studied topological properties. Indeed, the study of these properties even among subsets of Euclidean space, and the recognition of their independence from the particular form of the Euclidean metric, played a large role in clarifying the notion of a topological property and thus a topological space. However, whereas the structure of ''compact'' subsets of Euclidean space was understood quite early on via the Heine–Borel theorem, ''connected'' subsets of \R^n (for ''n'' > 1) proved to be much more complicated. Indeed, while any compact Hausdorff space is locally compact, a connected space—and even a connected subset of the Euclidean plane—need not be locally connected (see below). ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Locally Constant
In mathematics, a locally constant function is a function from a topological space into a set with the property that around every point of its domain, there exists some neighborhood of that point on which it restricts to a constant function. Definition Let f : X \to S be a function from a topological space X into a set S. If x \in X then f is said to locally constant at x if there exists a neighborhood U \subseteq X of x such that f is constant on U, which by definition means that f(u) = f(v) for all u, v \in U. The function f : X \to S is called locally constant if it is locally constant at every point x \in X in its domain. Examples Every constant function is locally constant. The converse will hold if its domain is a connected space. Every locally constant function from the real numbers \R to \R is constant, by the connectedness of \R. But the function f : \Q \to \R from the rationals \Q to \R, defined by f(x) = 0 \text x \pi, is locally constant (this uses the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Function (mathematics)
In mathematics, a function from a set to a set assigns to each element of exactly one element of .; the words map, mapping, transformation, correspondence, and operator are often used synonymously. The set is called the domain of the function and the set is called the codomain of the function.Codomain ''Encyclopedia of Mathematics'Codomain. ''Encyclopedia of Mathematics''/ref> The earliest known approach to the notion of function can be traced back to works of Persian mathematicians Al-Biruni and Sharaf al-Din al-Tusi. Functions were originally the idealization of how a varying quantity depends on another quantity. For example, the position of a planet is a ''function'' of time. Historically, the concept was elaborated with the infinitesimal calculus at the end of the 17th century, and, until the 19th century, the functions that were considered were differentiable (that is, they had a high degree of regularity). The concept of a function was formalized at the end of the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homeomorphism
In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the category of topological spaces—that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same. The word ''homeomorphism'' comes from the Greek words '' ὅμοιος'' (''homoios'') = similar or same and '' μορφή'' (''morphē'') = shape or form, introduced to mathematics by Henri Poincaré in 1895. Very roughly speaking, a topological space is a geometric object, and the homeomorphism is a continuous stretching and bending of the object into a new shape. Thus, a square and a circle are homeomorphic to each other, but a sphere and a torus are not. However, this desc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Natural Number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''Cardinal number, cardinal numbers'', and numbers used for ordering are called ''Ordinal number, ordinal numbers''. Natural numbers are sometimes used as labels, known as ''nominal numbers'', having none of the properties of numbers in a mathematical sense (e.g. sports Number (sports), jersey numbers). Some definitions, including the standard ISO/IEC 80000, ISO 80000-2, begin the natural numbers with , corresponding to the non-negative integers , whereas others start with , corresponding to the positive integers Texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, while in other writings, that term is used instead for the integers (including negative integers). The natural ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |