HOME
*





Base Change Lifting
In mathematics, base change lifting is a method of constructing new automorphic forms from old ones, that corresponds in Langlands philosophy to the operation of restricting a representation of a Galois group to a subgroup. The Doi–Naganuma lifting from 1967 was a precursor of the base change lifting. Base change lifting was introduced by for Hilbert modular form In mathematics, a Hilbert modular form is a generalization of modular forms to functions of two or more variables. It is a (complex) analytic function on the ''m''-fold product of upper half-planes \mathcal satisfying a certain kind of functional e ...s of cyclic totally real fields of prime degree, by comparing the trace of twisted Hecke operators on Hilbert modular forms with the trace of Hecke operators on ordinary modular forms. gave a representation theoretic interpretation of Saito's results and used this to generalize them. extended the base change lifting to more general automorphic forms and showed how to u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Automorphic Form
In harmonic analysis and number theory, an automorphic form is a well-behaved function from a topological group ''G'' to the complex numbers (or complex vector space) which is invariant under the action of a discrete subgroup \Gamma \subset G of the topological group. Automorphic forms are a generalization of the idea of periodic functions in Euclidean space to general topological groups. Modular forms are holomorphic automorphic forms defined over the groups SL(2, R) or PSL(2, R) with the discrete subgroup being the modular group, or one of its congruence subgroups; in this sense the theory of automorphic forms is an extension of the theory of modular forms. More generally, one can use the adelic approach as a way of dealing with the whole family of congruence subgroups at once. From this point of view, an automorphic form over the group ''G''(A''F''), for an algebraic group ''G'' and an algebraic number field ''F'', is a complex-valued function on ''G''(A''F'') that is left ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Langlands Philosophy
In representation theory and algebraic number theory, the Langlands program is a web of far-reaching and influential conjectures about connections between number theory and geometry. Proposed by , it seeks to relate Galois groups in algebraic number theory to automorphic forms and representation theory of algebraic groups over local fields and adeles. Widely seen as the single biggest project in modern mathematical research, the Langlands program has been described by Edward Frenkel as "a kind of grand unified theory of mathematics." The Langlands program consists of some very complicated theoretical abstractions, which can be difficult even for specialist mathematicians to grasp. To oversimplify, the fundamental lemma of the project posits a direct connection between the generalized fundamental representation of a finite field with its group extension to the automorphic forms under which it is invariant. This is accomplished through abstraction to higher dimensional integration ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Galois Group
In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the polynomials that give rise to them via Galois groups is called Galois theory, so named in honor of Évariste Galois who first discovered them. For a more elementary discussion of Galois groups in terms of permutation groups, see the article on Galois theory. Definition Suppose that E is an extension of the field F (written as E/F and read "''E'' over ''F'' "). An automorphism of E/F is defined to be an automorphism of E that fixes F pointwise. In other words, an automorphism of E/F is an isomorphism \alpha:E\to E such that \alpha(x) = x for each x\in F. The set of all automorphisms of E/F forms a group with the operation of function composition. This group is sometimes denoted by \operatorname(E/F). If E/F is a Galois extension, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Doi–Naganuma Lifting
In mathematics, the Doi–Naganuma lifting is a map from elliptic modular forms to Hilbert modular forms of a real quadratic field, introduced by and . It was a precursor of the base change lifting. It is named for Japanese mathematicians Kōji Doi (土井公二) and Hidehisa Naganuma (長沼英久). See also *Saito–Kurokawa lift In mathematics, the Saito–Kurokawa lift (or lifting) takes elliptic modular forms to Siegel modular forms of degree 2. The existence of this lifting was conjectured in 1977 independently by Hiroshi Saito and . Its existence was almost proved by , ..., a similar lift to Siegel modular forms References * * * {{DEFAULTSORT:Doi-Naganuma lifting Modular forms ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hilbert Modular Form
In mathematics, a Hilbert modular form is a generalization of modular forms to functions of two or more variables. It is a (complex) analytic function on the ''m''-fold product of upper half-planes \mathcal satisfying a certain kind of functional equation. Definition Let ''F'' be a totally real number field of degree ''m'' over the rational field. Let \sigma_1, \ldots, \sigma_m be the real embeddings of ''F''. Through them we have a map :GL_2(F) \to GL_2(\R)^m. Let \mathcal O_F be the ring of integers of ''F''. The group GL_2^+(\mathcal O_F) is called the ''full Hilbert modular group''. For every element z = (z_1, \ldots, z_m) \in \mathcal^m, there is a group action of GL_2^+ (\mathcal O_F) defined by \gamma \cdot z = (\sigma_1(\gamma) z_1, \ldots, \sigma_m(\gamma) z_m) For :g = \begina & b \\ c & d \end \in GL_2(\R), define: :j(g, z) = \det(g)^ (cz+d) A Hilbert modular form of weight (k_1,\ldots,k_m) is an analytic function on \mathcal^m such that for every \gamma \in GL_2^ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hecke Operator
In mathematics, in particular in the theory of modular forms, a Hecke operator, studied by , is a certain kind of "averaging" operator that plays a significant role in the structure of vector spaces of modular forms and more general automorphic representations. History used Hecke operators on modular forms in a paper on the special cusp form of Ramanujan, ahead of the general theory given by . Mordell proved that the Ramanujan tau function, expressing the coefficients of the Ramanujan form, : \Delta(z)=q\left(\prod_^(1-q^n)\right)^= \sum_^ \tau(n)q^n, \quad q=e^, is a multiplicative function: : \tau(mn)=\tau(m)\tau(n) \quad \text (m,n)=1. The idea goes back to earlier work of Adolf Hurwitz, who treated algebraic correspondences between modular curves which realise some individual Hecke operators. Mathematical description Hecke operators can be realized in a number of contexts. The simplest meaning is combinatorial, namely as taking for a given integer some functio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Galois Extension
In mathematics, a Galois extension is an algebraic field extension ''E''/''F'' that is normal and separable; or equivalently, ''E''/''F'' is algebraic, and the field fixed by the automorphism group Aut(''E''/''F'') is precisely the base field ''F''. The significance of being a Galois extension is that the extension has a Galois group and obeys the fundamental theorem of Galois theory. A result of Emil Artin allows one to construct Galois extensions as follows: If ''E'' is a given field, and ''G'' is a finite group of automorphisms of ''E'' with fixed field ''F'', then ''E''/''F'' is a Galois extension. Characterization of Galois extensions An important theorem of Emil Artin states that for a finite extension E/F, each of the following statements is equivalent to the statement that E/F is Galois: *E/F is a normal extension and a separable extension. *E is a splitting field of a separable polynomial with coefficients in F. *, \!\operatorname(E/F), = :F that is, the number o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Global Field
In mathematics, a global field is one of two type of fields (the other one is local field) which are characterized using valuations. There are two kinds of global fields: * Algebraic number field: A finite extension of \mathbb *Global function field: The function field of an algebraic curve over a finite field, equivalently, a finite extension of \mathbb_q(T), the field of rational functions in one variable over the finite field with q=p^n elements. An axiomatic characterization of these fields via valuation theory was given by Emil Artin and George Whaples in the 1940s. Formal definitions A ''global field'' is one of the following: ;An algebraic number field An algebraic number field ''F'' is a finite (and hence algebraic) field extension of the field of rational numbers Q. Thus ''F'' is a field that contains Q and has finite dimension when considered as a vector space over Q. ;The function field of an algebraic curve over a finite field A function field of a variety is t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Langlands Functoriality
In representation theory and algebraic number theory, the Langlands program is a web of far-reaching and influential conjectures about connections between number theory and geometry. Proposed by , it seeks to relate Galois groups in algebraic number theory to automorphic forms and representation theory of algebraic groups over local fields and adeles. Widely seen as the single biggest project in modern mathematical research, the Langlands program has been described by Edward Frenkel as "a kind of grand unified theory of mathematics." The Langlands program consists of some very complicated theoretical abstractions, which can be difficult even for specialist mathematicians to grasp. To oversimplify, the fundamental lemma of the project posits a direct connection between the generalized fundamental representation of a finite field with its group extension to the automorphic forms under which it is invariant. This is accomplished through abstraction to higher dimensional integ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Princeton University Press
Princeton University Press is an independent publisher with close connections to Princeton University. Its mission is to disseminate scholarship within academia and society at large. The press was founded by Whitney Darrow, with the financial support of Charles Scribner, as a printing press to serve the Princeton community in 1905. Its distinctive building was constructed in 1911 on William Street in Princeton. Its first book was a new 1912 edition of John Witherspoon's ''Lectures on Moral Philosophy.'' History Princeton University Press was founded in 1905 by a recent Princeton graduate, Whitney Darrow, with financial support from another Princetonian, Charles Scribner II. Darrow and Scribner purchased the equipment and assumed the operations of two already existing local publishers, that of the ''Princeton Alumni Weekly'' and the Princeton Press. The new press printed both local newspapers, university documents, ''The Daily Princetonian'', and later added book publishing to it ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]