HOME
*





Whitney Disc
In mathematics, given two submanifolds ''A'' and ''B'' of a manifold ''X'' intersecting in two points ''p'' and ''q'', a Whitney disc is a mapping from the two-dimensional disc ''D'', with two marked points, to ''X'', such that the two marked points go to ''p'' and ''q'', one boundary arc of ''D'' goes to ''A'' and the other to ''B''.. Their existence and embeddedness is crucial in proving the cobordism theorem, where it is used to cancel the intersection points; and its failure in low dimensions corresponds to not being able to embed a Whitney disc. Casson handles are an important technical tool for constructing the embedded Whitney disc relevant to many results on topological four-manifolds. Pseudoholomorphic Whitney discs are counted by the differential in Lagrangian intersection Floer homology In mathematics, Floer homology is a tool for studying symplectic geometry and low-dimensional topology. Floer homology is a novel invariant that arises as an infinite-dimensional ana ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Submanifold
In mathematics, a submanifold of a manifold ''M'' is a subset ''S'' which itself has the structure of a manifold, and for which the inclusion map satisfies certain properties. There are different types of submanifolds depending on exactly which properties are required. Different authors often have different definitions. Formal definition In the following we assume all manifolds are differentiable manifolds of class ''C''''r'' for a fixed , and all morphisms are differentiable of class ''C''''r''. Immersed submanifolds An immersed submanifold of a manifold ''M'' is the image ''S'' of an immersion map ; in general this image will not be a submanifold as a subset, and an immersion map need not even be injective (one-to-one) – it can have self-intersections. More narrowly, one can require that the map be an injection (one-to-one), in which we call it an injective immersion, and define an immersed submanifold to be the image subset ''S'' together with a topology and differentia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of n-dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane. The concept of a manifold is central to many parts of geometry and modern mathematical physics because it allows complicated structures to be described in terms of well-understood topological properties of simpler spaces. Manifolds naturally arise as solution sets of systems of equations and as graphs of functions. The concept has applications in computer-graphics given the need to associate pictures with coordinates (e.g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Disk (mathematics)
In geometry, a disk (also spelled disc). is the region in a plane bounded by a circle. A disk is said to be ''closed'' if it contains the circle that constitutes its boundary, and ''open'' if it does not. For a radius, r, an open disk is usually denoted as D_r and a closed disk is \overline. However in the field of topology the closed disk is usually denoted as D^2 while the open disk is \operatorname D^2. Formulas In Cartesian coordinates, the ''open disk'' of center (a, b) and radius ''R'' is given by the formula :D=\ while the ''closed disk'' of the same center and radius is given by :\overline=\. The area of a closed or open disk of radius ''R'' is π''R''2 (see area of a disk). Properties The disk has circular symmetry. The open disk and the closed disk are not topologically equivalent (that is, they are not homeomorphic), as they have different topological properties from each other. For instance, every closed disk is compact whereas every open disk is not compact ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Embedding
In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group that is a subgroup. When some object X is said to be embedded in another object Y, the embedding is given by some injective and structure-preserving map f:X\rightarrow Y. The precise meaning of "structure-preserving" depends on the kind of mathematical structure of which X and Y are instances. In the terminology of category theory, a structure-preserving map is called a morphism. The fact that a map f:X\rightarrow Y is an embedding is often indicated by the use of a "hooked arrow" (); thus: f : X \hookrightarrow Y. (On the other hand, this notation is sometimes reserved for inclusion maps.) Given X and Y, several different embeddings of X in Y may be possible. In many cases of interest there is a standard (or "canonical") embedding, like those of the natural numbers in the integers, the integers in the rational numbers, the rational n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cobordism Theorem
In geometric topology and differential topology, an (''n'' + 1)-dimensional cobordism ''W'' between ''n''-dimensional manifolds ''M'' and ''N'' is an ''h''-cobordism (the ''h'' stands for homotopy equivalence) if the inclusion maps : M \hookrightarrow W \quad\mbox\quad N \hookrightarrow W are homotopy equivalences. The ''h''-cobordism theorem gives sufficient conditions for an ''h''-cobordism to be trivial, i.e., to be C-isomorphic to the cylinder ''M'' × , 1 Here C refers to any of the categories of smooth, piecewise linear, or topological manifolds. The theorem was first proved by Stephen Smale for which he received the Fields Medal and is a fundamental result in the theory of high-dimensional manifolds. For a start, it almost immediately proves the generalized Poincaré conjecture. Background Before Smale proved this theorem, mathematicians became stuck while trying to understand manifolds of dimension 3 or 4, and assumed that the higher-dimensional cases ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Casson Handle
In 4-dimensional topology, a branch of mathematics, a Casson handle is a 4-dimensional topological 2-handle constructed by an infinite procedure. They are named for Andrew Casson, who introduced them in about 1973. They were originally called "flexible handles" by Casson himself, and introduced the name "Casson handle" by which they are known today. In that work he showed that Casson handles are topological 2-handles, and used this to classify simply connected compact topological 4-manifolds. Motivation In the proof of the h-cobordism theorem, the following construction is used. Given a circle in the boundary of a manifold, we would often like to find a disk embedded in the manifold whose boundary is the given circle. If the manifold is simply connected then we can find a map from a disc to the manifold with boundary the given circle, and if the manifold is of dimension at least 5 then by putting this disc in "general position" it becomes an embedding. The number 5 appears for the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Four-manifold
In mathematics, a 4-manifold is a 4-dimensional topological manifold. A smooth 4-manifold is a 4-manifold with a smooth structure. In dimension four, in marked contrast with lower dimensions, topological and smooth manifolds are quite different. There exist some topological 4-manifolds which admit no smooth structure, and even if there exists a smooth structure, it need not be unique (i.e. there are smooth 4-manifolds which are homeomorphic but not diffeomorphic). 4-manifolds are important in physics because in General Relativity, spacetime is modeled as a pseudo-Riemannian In differential geometry, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which t ... 4-manifold. Topological 4-manifolds The homotopy type of a simply connected compact 4-manifold only depends on the intersection form (4-manifold), intersection ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pseudoholomorphic
In mathematics, specifically in topology and geometry, a pseudoholomorphic curve (or ''J''-holomorphic curve) is a smooth map from a Riemann surface into an almost complex manifold that satisfies the Cauchy–Riemann equation. Introduced in 1985 by Mikhail Gromov, pseudoholomorphic curves have since revolutionized the study of symplectic manifolds. In particular, they lead to the Gromov–Witten invariants and Floer homology, and play a prominent role in string theory. Definition Let X be an almost complex manifold with almost complex structure J. Let C be a smooth Riemann surface (also called a complex curve) with complex structure j. A pseudoholomorphic curve in X is a map f : C \to X that satisfies the Cauchy–Riemann equation :\bar \partial_ f := \frac(df + J \circ df \circ j) = 0. Since J^2 = -1, this condition is equivalent to :J \circ df = df \circ j, which simply means that the differential df is complex-linear, that is, J maps each tangent space :T_xf(C)\subseteq T_xX ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lagrangian System
In mathematics, a Lagrangian system is a pair , consisting of a smooth fiber bundle and a Lagrangian density , which yields the Euler–Lagrange differential operator acting on sections of . In classical mechanics, many dynamical systems are Lagrangian systems. The configuration space of such a Lagrangian system is a fiber bundle over the time axis . In particular, if a reference frame is fixed. In classical field theory, all field systems are the Lagrangian ones. Lagrangians and Euler–Lagrange operators A Lagrangian density (or, simply, a Lagrangian) of order is defined as an -form, , on the -order jet manifold of . A Lagrangian can be introduced as an element of the variational bicomplex of the differential graded algebra of exterior forms on jet manifolds of . The coboundary operator of this bicomplex contains the variational operator which, acting on , defines the associated Euler–Lagrange operator . In coordinates Given bundle coordinates on a fiber bu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Floer Homology
In mathematics, Floer homology is a tool for studying symplectic geometry and low-dimensional topology. Floer homology is a novel invariant that arises as an infinite-dimensional analogue of finite-dimensional Morse homology. Andreas Floer introduced the first version of Floer homology, now called Lagrangian Floer homology, in his proof of the Arnold conjecture in symplectic geometry. Floer also developed a closely related theory for Lagrangian submanifolds of a symplectic manifold. A third construction, also due to Floer, associates homology groups to closed three-dimensional manifolds using the Yang–Mills functional. These constructions and their descendants play a fundamental role in current investigations into the topology of symplectic and contact manifolds as well as (smooth) three- and four-dimensional manifolds. Floer homology is typically defined by associating to the object of interest an infinite-dimensional manifold and a real valued function on it. In the sympl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]