Weak Order Unit
In mathematics, specifically in order theory and functional analysis, an element x of a vector lattice In mathematics, a Riesz space, lattice-ordered vector space or vector lattice is a partially ordered vector space where the order structure is a lattice. Riesz spaces are named after Frigyes Riesz who first defined them in his 1928 paper ''Su ... X is called a weak order unit in X if x \geq 0 and also for all y \in X, \inf \ = 0 \text y = 0. Examples * If X is a separable Fréchet topological vector lattice then the set of weak order units is dense in the positive cone of X. See also * * Citations References * * {{mathematics-stub Functional analysis ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Order Theory
Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article introduces the field and provides basic definitions. A list of order-theoretic terms can be found in the order theory glossary. Background and motivation Orders are everywhere in mathematics and related fields like computer science. The first order often discussed in primary school is the standard order on the natural numbers e.g. "2 is less than 3", "10 is greater than 5", or "Does Tom have fewer cookies than Sally?". This intuitive concept can be extended to orders on other sets of numbers, such as the integers and the reals. The idea of being greater than or less than another number is one of the basic intuitions of number systems (compare with numeral systems) in general (although one usually is also interested in the actual difference ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. Inner product space#Definition, inner product, Norm (mathematics)#Definition, norm, Topological space#Definition, topology, etc.) and the linear transformation, linear functions defined on these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of function space, spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining continuous function, continuous, unitary operator, unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of differential equations, differential and integral equations. The usage of the word ''functional (mathematics), functional'' as a noun goes back to the calculus of variati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vector Lattice
In mathematics, a Riesz space, lattice-ordered vector space or vector lattice is a partially ordered vector space where the order structure is a lattice. Riesz spaces are named after Frigyes Riesz who first defined them in his 1928 paper ''Sur la décomposition des opérations fonctionelles linéaires''. Riesz spaces have wide-ranging applications. They are important in measure theory, in that important results are special cases of results for Riesz spaces. For example, the Radon–Nikodym theorem follows as a special case of the Freudenthal spectral theorem. Riesz spaces have also seen application in mathematical economics through the work of Greek-American economist and mathematician Charalambos D. Aliprantis. Definition Preliminaries If X is an ordered vector space (which by definition is a vector space over the reals) and if S is a subset of X then an element b \in X is an upper bound (resp. lower bound) of S if s \leq b (resp. s \geq b) for all s \in S. An element ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Separable Space
In mathematics, a topological space is called separable if it contains a countable, dense subset; that is, there exists a sequence \_^ of elements of the space such that every nonempty open subset of the space contains at least one element of the sequence. Like the other axioms of countability, separability is a "limitation on size", not necessarily in terms of cardinality (though, in the presence of the Hausdorff axiom, this does turn out to be the case; see below) but in a more subtle topological sense. In particular, every continuous function on a separable space whose image is a subset of a Hausdorff space is determined by its values on the countable dense subset. Contrast separability with the related notion of second countability, which is in general stronger but equivalent on the class of metrizable spaces. First examples Any topological space that is itself finite or countably infinite is separable, for the whole space is a countable dense subset of itself. An importa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fréchet Space
In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces (normed vector spaces that are complete with respect to the metric induced by the norm). All Banach and Hilbert spaces are Fréchet spaces. Spaces of infinitely differentiable functions are typical examples of Fréchet spaces, many of which are typically Banach spaces. A Fréchet space X is defined to be a locally convex metrizable topological vector space (TVS) that is complete as a TVS, meaning that every Cauchy sequence in X converges to some point in X (see footnote for more details).Here "Cauchy" means Cauchy with respect to the canonical uniformity that every TVS possess. That is, a sequence x_ = \left(x_m\right)_^ in a TVS X is Cauchy if and only if for all neighborhoods U of the origin in X, x_m - x_n \in U whenever m and n are sufficiently large. Note that this definition of a Cau ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Topological Vector Lattice
In mathematics, specifically in functional analysis and order theory, a topological vector lattice is a Hausdorff topological vector space (TVS) X that has a partial order \,\leq\, making it into vector lattice that is possesses a neighborhood base at the origin consisting of solid sets. Ordered vector lattices have important applications in spectral theory. Definition If X is a vector lattice then by the vector lattice operations we mean the following maps: # the three maps X to itself defined by x \mapsto, x , , x \mapsto x^+, x \mapsto x^, and # the two maps from X \times X into X defined by (x, y) \mapsto \sup_ \ and(x, y) \mapsto \inf_ \. If X is a TVS over the reals and a vector lattice, then X is locally solid if and only if (1) its positive cone is a normal cone, and (2) the vector lattice operations are continuous. If X is a vector lattice and an ordered topological vector space that is a Fréchet space in which the positive cone is a normal cone, then the lattice ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |