Topological Vector Lattice
   HOME

TheInfoList



OR:

In mathematics, specifically in
functional analysis Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. inner product, norm, topology, etc.) and the linear functions defined o ...
and
order theory Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article int ...
, a topological vector lattice is a Hausdorff
topological vector space In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is als ...
(TVS) X that has a
partial order In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a bina ...
\,\leq\, making it into
vector lattice In mathematics, a Riesz space, lattice-ordered vector space or vector lattice is a partially ordered vector space where the order structure is a lattice. Riesz spaces are named after Frigyes Riesz who first defined them in his 1928 paper ''Su ...
that is possesses a neighborhood base at the origin consisting of
solid set In mathematics, specifically in order theory and functional analysis, a subset S of a vector lattice is said to be solid and is called an ideal if for all s \in S and x \in X, if , x, \leq , s, then x \in S. An ordered vector space In mathemati ...
s. Ordered vector lattices have important applications in
spectral theory In mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operators in a variety of mathematical spaces. It is a result ...
.


Definition

If X is a vector lattice then by the vector lattice operations we mean the following maps: # the three maps X to itself defined by x \mapsto, x , , x \mapsto x^+, x \mapsto x^, and # the two maps from X \times X into X defined by (x, y) \mapsto \sup_ \ and(x, y) \mapsto \inf_ \. If X is a TVS over the reals and a vector lattice, then X is locally solid if and only if (1) its positive cone is a
normal cone In algebraic geometry, the normal cone C_XY of a subscheme X of a scheme Y is a scheme analogous to the normal bundle or tubular neighborhood in differential geometry. Definition The normal cone or C_ of an embedding , defined by some sheaf of i ...
, and (2) the vector lattice operations are continuous. If X is a vector lattice and an
ordered topological vector space In mathematics, specifically in functional analysis and order theory, an ordered topological vector space, also called an ordered TVS, is a topological vector space (TVS) ''X'' that has a partial order ≤ making it into an ordered vector space whos ...
that is a
Fréchet space In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces ( normed vector spaces that are complete with respect to th ...
in which the positive cone is a
normal cone In algebraic geometry, the normal cone C_XY of a subscheme X of a scheme Y is a scheme analogous to the normal bundle or tubular neighborhood in differential geometry. Definition The normal cone or C_ of an embedding , defined by some sheaf of i ...
, then the lattice operations are continuous. If X is a
topological vector space In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is als ...
(TVS) and an
ordered vector space In mathematics, an ordered vector space or partially ordered vector space is a vector space equipped with a partial order that is compatible with the vector space operations. Definition Given a vector space ''X'' over the real numbers R and a pr ...
then X is called locally solid if X possesses a neighborhood base at the origin consisting of
solid set In mathematics, specifically in order theory and functional analysis, a subset S of a vector lattice is said to be solid and is called an ideal if for all s \in S and x \in X, if , x, \leq , s, then x \in S. An ordered vector space In mathemati ...
s. A topological vector lattice is a Hausdorff TVS X that has a
partial order In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a bina ...
\,\leq\, making it into
vector lattice In mathematics, a Riesz space, lattice-ordered vector space or vector lattice is a partially ordered vector space where the order structure is a lattice. Riesz spaces are named after Frigyes Riesz who first defined them in his 1928 paper ''Su ...
that is locally solid.


Properties

Every topological vector lattice has a closed positive cone and is thus an
ordered topological vector space In mathematics, specifically in functional analysis and order theory, an ordered topological vector space, also called an ordered TVS, is a topological vector space (TVS) ''X'' that has a partial order ≤ making it into an ordered vector space whos ...
. Let \mathcal denote the set of all bounded subsets of a topological vector lattice with positive cone C and for any subset S, let C := (S + C) \cap (S - C) be the C-saturated hull of S. Then the topological vector lattice's positive cone C is a strict \mathcal-cone, where C is a strict \mathcal-cone means that \left\ is a fundamental subfamily of \mathcal that is, every B \in \mathcal is contained as a subset of some element of \left\). If a topological vector lattice X is
order complete In mathematics, specifically in order theory and functional analysis, a subset A of an ordered vector space is said to be order complete in X if for every non-empty subset S of C that is order bounded in A (meaning contained in an interval, which is ...
then every band is closed in X.


Examples

The Banach spaces L^p(\mu) (1 \leq p \leq \infty) are Banach lattices under their canonical orderings. These spaces are order complete for p < \infty.


See also

* * * * * * * *


References


Bibliography

* * {{Order theory Functional analysis