HOME
*





Uniformization (set Theory)
In set theory, a branch of mathematics, the axiom of uniformization is a weak form of the axiom of choice. It states that if R is a subset of X\times Y, where X and Y are Polish spaces, then there is a subset f of R that is a partial function from X to Y, and whose domain (the set of all x such that f(x) exists) equals : \\, Such a function is called a uniformizing function for R, or a uniformization of R. To see the relationship with the axiom of choice, observe that R can be thought of as associating, to each element of X, a subset of Y. A uniformization of R then picks exactly one element from each such subset, whenever the subset is non-empty. Thus, allowing arbitrary sets ''X'' and ''Y'' (rather than just Polish spaces) would make the axiom of uniformization equivalent to the axiom of choice. A pointclass \boldsymbol is said to have the uniformization property if every relation R in \boldsymbol can be uniformized by a partial function in \boldsymbol. The uniformizatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Set Theory
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of '' naive set theory''. After the discovery of paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox) various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set theory is commonly employed as a foundational ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Scale Property
In the mathematical discipline of descriptive set theory, a scale is a certain kind of object defined on a set of points in some Polish space (for example, a scale might be defined on a set of real numbers). Scales were originally isolated as a concept in the theory of uniformization, but have found wide applicability in descriptive set theory, with applications such as establishing bounds on the possible lengths of wellorderings of a given complexity, and showing (under certain assumptions) that there are largest countable sets of certain complexities. Formal definition Given a pointset ''A'' contained in some product space :A\subseteq X=X_0\times X_1\times\ldots X_ where each ''Xk'' is either the Baire space or a countably infinite discrete set, we say that a ''norm'' on ''A'' is a map from ''A'' into the ordinal numbers. Each norm has an associated prewellordering, where one element of ''A'' precedes another element if the norm of the first is less than the norm of the second. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Set Theory
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory. The non-formalized systems investigated during this early stage go under the name of '' naive set theory''. After the discovery of paradoxes within naive set theory (such as Russell's paradox, Cantor's paradox and the Burali-Forti paradox) various axiomatic systems were proposed in the early twentieth century, of which Zermelo–Fraenkel set theory (with or without the axiom of choice) is still the best-known and most studied. Set theory is commonly employed as a foundational ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Axiom Of Determinacy
In mathematics, the axiom of determinacy (abbreviated as AD) is a possible axiom for set theory introduced by Jan Mycielski and Hugo Steinhaus in 1962. It refers to certain two-person topological games of length ω. AD states that every game of a certain type is determined; that is, one of the two players has a winning strategy. Steinhaus and Mycielski's motivation for AD was its interesting consequences, and suggested that AD could be true in the smallest natural model L(R) of a set theory, which accepts only a weak form of the axiom of choice (AC) but contains all real and all ordinal numbers. Some consequences of AD followed from theorems proved earlier by Stefan Banach and Stanisław Mazur, and Morton Davis. Mycielski and Stanisław Świerczkowski contributed another one: AD implies that all sets of real numbers are Lebesgue measurable. Later Donald A. Martin and others proved more important consequences, especially in descriptive set theory. In 1988, John R. Steel an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




L(R)
In set theory, L(R) (pronounced L of R) is the smallest transitive inner model of ZF containing all the ordinals and all the reals. Construction It can be constructed in a manner analogous to the construction of L (that is, Gödel's constructible universe), by adding in all the reals at the start, and then iterating the definable powerset operation through all the ordinals. Assumptions In general, the study of L(R) assumes a wide array of large cardinal axioms, since without these axioms one cannot show even that L(R) is distinct from L. But given that sufficient large cardinals exist, L(R) does not satisfy the axiom of choice, but rather the axiom of determinacy. However, L(R) will still satisfy the axiom of dependent choice, given only that the von Neumann universe, ''V'', also satisfies that axiom. Results Given the assumptions above, some additional results of the theory are: * Every projective set of reals – and therefore every analytic set and every Borel set of reals ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Projective Set
In the mathematical field of descriptive set theory, a subset A of a Polish space X is projective if it is \boldsymbol^1_n for some positive integer n. Here A is * \boldsymbol^1_1 if A is analytic * \boldsymbol^1_n if the complement of A, X\setminus A, is \boldsymbol^1_n * \boldsymbol^1_ if there is a Polish space Y and a \boldsymbol^1_n subset C\subseteq X\times Y such that A is the projection of C; that is, A=\ The choice of the Polish space Y in the third clause above is not very important; it could be replaced in the definition by a fixed uncountable Polish space, say Baire space or Cantor space or the real line. Relationship to the analytical hierarchy There is a close relationship between the relativized analytical hierarchy on subsets of Baire space (denoted by lightface letters \Sigma and \Pi) and the projective hierarchy on subsets of Baire space (denoted by boldface letters \boldsymbol and \boldsymbol). Not every \boldsymbol^1_n subset of Baire space is \Sigma^1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''Cardinal number, cardinal numbers'', and numbers used for ordering are called ''Ordinal number, ordinal numbers''. Natural numbers are sometimes used as labels, known as ''nominal numbers'', having none of the properties of numbers in a mathematical sense (e.g. sports Number (sports), jersey numbers). Some definitions, including the standard ISO/IEC 80000, ISO 80000-2, begin the natural numbers with , corresponding to the non-negative integers , whereas others start with , corresponding to the positive integers Texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, while in other writings, that term is used instead for the integers (including negative integers). The natural ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Large Cardinal
In the mathematical field of set theory, a large cardinal property is a certain kind of property of transfinite cardinal numbers. Cardinals with such properties are, as the name suggests, generally very "large" (for example, bigger than the least α such that α=ωα). The proposition that such cardinals exist cannot be proved in the most common axiomatization of set theory, namely ZFC, and such propositions can be viewed as ways of measuring how "much", beyond ZFC, one needs to assume to be able to prove certain desired results. In other words, they can be seen, in Dana Scott's phrase, as quantifying the fact "that if you want more you have to assume more". There is a rough convention that results provable from ZFC alone may be stated without hypotheses, but that if the proof requires other assumptions (such as the existence of large cardinals), these should be stated. Whether this is simply a linguistic convention, or something more, is a controversial point among distinct philo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adequate Pointclass
In the mathematical field of descriptive set theory, a pointclass can be called adequate if it contains all recursive Recursion (adjective: ''recursive'') occurs when a thing is defined in terms of itself or of its type. Recursion is used in a variety of disciplines ranging from linguistics to logic. The most common application of recursion is in mathematics ... pointsets and is closed under recursive substitution, bounded universal and existential quantification and preimages by recursive functions.. References Descriptive set theory {{settheory-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binary Relation
In mathematics, a binary relation associates elements of one set, called the ''domain'', with elements of another set, called the ''codomain''. A binary relation over Set (mathematics), sets and is a new set of ordered pairs consisting of elements in and in . It is a generalization of the more widely understood idea of a unary function. It encodes the common concept of relation: an element is ''related'' to an element , if and only if the pair belongs to the set of ordered pairs that defines the ''binary relation''. A binary relation is the most studied special case of an Finitary relation, -ary relation over sets , which is a subset of the Cartesian product X_1 \times \cdots \times X_n. An example of a binary relation is the "divides" relation over the set of prime numbers \mathbb and the set of integers \mathbb, in which each prime is related to each integer that is a Divisibility, multiple of , but not to an integer that is not a multiple of . In this relation, for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Pointclass
In the mathematical field of descriptive set theory, a pointclass is a collection of sets of points, where a ''point'' is ordinarily understood to be an element of some perfect Polish space. In practice, a pointclass is usually characterized by some sort of ''definability property''; for example, the collection of all open sets in some fixed collection of Polish spaces is a pointclass. (An open set may be seen as in some sense definable because it cannot be a purely arbitrary collection of points; for any point in the set, all points sufficiently close to that point must also be in the set.) Pointclasses find application in formulating many important principles and theorems from set theory and real analysis. Strong set-theoretic principles may be stated in terms of the determinacy of various pointclasses, which in turn implies that sets in those pointclasses (or sometimes larger ones) have regularity properties such as Lebesgue measurability (and indeed universal measurability ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]