HOME
*





L(R)
In set theory, L(R) (pronounced L of R) is the smallest transitive inner model of ZF containing all the ordinals and all the reals. Construction It can be constructed in a manner analogous to the construction of L (that is, Gödel's constructible universe), by adding in all the reals at the start, and then iterating the definable powerset operation through all the ordinals. Assumptions In general, the study of L(R) assumes a wide array of large cardinal axioms, since without these axioms one cannot show even that L(R) is distinct from L. But given that sufficient large cardinals exist, L(R) does not satisfy the axiom of choice, but rather the axiom of determinacy. However, L(R) will still satisfy the axiom of dependent choice, given only that the von Neumann universe, ''V'', also satisfies that axiom. Results Given the assumptions above, some additional results of the theory are: * Every projective set of reals – and therefore every analytic set and every Borel set of reals ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Uniformization (set Theory)
In set theory, a branch of mathematics, the axiom of uniformization is a weak form of the axiom of choice. It states that if R is a subset of X\times Y, where X and Y are Polish spaces, then there is a subset f of R that is a partial function from X to Y, and whose domain (the set of all x such that f(x) exists) equals : \\, Such a function is called a uniformizing function for R, or a uniformization of R. To see the relationship with the axiom of choice, observe that R can be thought of as associating, to each element of X, a subset of Y. A uniformization of R then picks exactly one element from each such subset, whenever the subset is non-empty. Thus, allowing arbitrary sets ''X'' and ''Y'' (rather than just Polish spaces) would make the axiom of uniformization equivalent to the axiom of choice. A pointclass \boldsymbol is said to have the uniformization property if every relation R in \boldsymbol can be uniformized by a partial function in \boldsymbol. The uniformizatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Axiom Of Determinacy
In mathematics, the axiom of determinacy (abbreviated as AD) is a possible axiom for set theory introduced by Jan Mycielski and Hugo Steinhaus in 1962. It refers to certain two-person topological games of length ω. AD states that every game of a certain type is determined; that is, one of the two players has a winning strategy. Steinhaus and Mycielski's motivation for AD was its interesting consequences, and suggested that AD could be true in the smallest natural model L(R) of a set theory, which accepts only a weak form of the axiom of choice (AC) but contains all real and all ordinal numbers. Some consequences of AD followed from theorems proved earlier by Stefan Banach and Stanisław Mazur, and Morton Davis. Mycielski and Stanisław Świerczkowski contributed another one: AD implies that all sets of real numbers are Lebesgue measurable. Later Donald A. Martin and others proved more important consequences, especially in descriptive set theory. In 1988, John R. Steel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Axiom Of Uniformization
In set theory, a branch of mathematics, the axiom of uniformization is a weak form of the axiom of choice. It states that if R is a subset of X\times Y, where X and Y are Polish spaces, then there is a subset f of R that is a partial function from X to Y, and whose domain (the set of all x such that f(x) exists) equals : \\, Such a function is called a uniformizing function for R, or a uniformization of R. To see the relationship with the axiom of choice, observe that R can be thought of as associating, to each element of X, a subset of Y. A uniformization of R then picks exactly one element from each such subset, whenever the subset is non-empty. Thus, allowing arbitrary sets ''X'' and ''Y'' (rather than just Polish spaces) would make the axiom of uniformization equivalent to the axiom of choice. A pointclass \boldsymbol is said to have the uniformization property if every relation R in \boldsymbol can be uniformized by a partial function in \boldsymbol. The uniformization ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Determinacy
Determinacy is a subfield of set theory, a branch of mathematics, that examines the conditions under which one or the other player of a game has a winning strategy, and the consequences of the existence of such strategies. Alternatively and similarly, "determinacy" is the property of a game whereby such a strategy exists. Determinacy was introduced by Gale and Stewart in 1950, under the name "determinateness". The games studied in set theory are usually Gale–Stewart games—two-player games of perfect information in which the players make an infinite sequence of moves and there are no draws. The field of game theory studies more general kinds of games, including games with draws such as tic-tac-toe, chess, or infinite chess, or games with imperfect information such as poker. Basic notions Games The first sort of game we shall consider is the two-player game of perfect information of length ω, in which the players play natural numbers. These games are often cal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inner Model Theory
In set theory, inner model theory is the study of certain models of ZFC or some fragment or strengthening thereof. Ordinarily these models are transitive subsets or subclasses of the von Neumann universe ''V'', or sometimes of a generic extension of ''V''. Inner model theory studies the relationships of these models to determinacy, large cardinals, and descriptive set theory. Despite the name, it is considered more a branch of set theory than of model theory. Examples *The class of all sets is an inner model containing all other inner models. *The first non-trivial example of an inner model was the constructible universe ''L'' developed by Kurt Gödel. Every model ''M'' of ZF has an inner model ''L''M satisfying the axiom of constructibility, and this will be the smallest inner model of ''M'' containing all the ordinals of ''M''. Regardless of the properties of the original model, ''L''''M'' will satisfy the generalized continuum hypothesis and combinatorial axioms such as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gödel's Constructible Universe
In mathematics, in set theory, the constructible universe (or Gödel's constructible universe), denoted by , is a particular class of sets that can be described entirely in terms of simpler sets. is the union of the constructible hierarchy . It was introduced by Kurt Gödel in his 1938 paper "The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis". In this paper, he proved that the constructible universe is an inner model of ZF set theory (that is, of Zermelo–Fraenkel set theory with the axiom of choice excluded), and also that the axiom of choice and the generalized continuum hypothesis are true in the constructible universe. This shows that both propositions are consistent with the basic axioms of set theory, if ZF itself is consistent. Since many other theorems only hold in systems in which one or both of the propositions is true, their consistency is an important result. What is can be thought of as being built in "stages" resembling the co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Property Of Baire
A subset A of a topological space X has the property of Baire (Baire property, named after René-Louis Baire), or is called an almost open set, if it differs from an open set by a meager set; that is, if there is an open set U\subseteq X such that A \bigtriangleup U is meager (where \bigtriangleup denotes the symmetric difference).. Definitions A subset A \subseteq X of a topological space X is called almost open and is said to have the property of Baire or the Baire property if there is an open set U\subseteq X such that A \bigtriangleup U is a meager subset, where \bigtriangleup denotes the symmetric difference. Further, A has the Baire property in the restricted sense if for every subset E of X the intersection A\cap E has the Baire property relative to E. Properties The family of sets with the property of Baire forms a σ-algebra. That is, the complement of an almost open set is almost open, and any countable union or intersection of almost open sets is again almos ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Forcing (mathematics)
In the mathematical discipline of set theory, forcing is a technique for proving consistency and independence results. It was first used by Paul Cohen in 1963, to prove the independence of the axiom of choice and the continuum hypothesis from Zermelo–Fraenkel set theory. Forcing has been considerably reworked and simplified in the following years, and has since served as a powerful technique, both in set theory and in areas of mathematical logic such as recursion theory. Descriptive set theory uses the notions of forcing from both recursion theory and set theory. Forcing has also been used in model theory, but it is common in model theory to define genericity directly without mention of forcing. Intuition Intuitively, forcing consists of expanding the set theoretical universe V to a larger universe V^ . In this bigger universe, for example, one might have many new real numbers, identified with subsets of the set \mathbb of natural numbers, that were not there in the ol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elementary Submodel
In model theory, a branch of mathematical logic, two structures ''M'' and ''N'' of the same signature ''σ'' are called elementarily equivalent if they satisfy the same first-order ''σ''-sentences. If ''N'' is a substructure of ''M'', one often needs a stronger condition. In this case ''N'' is called an elementary substructure of ''M'' if every first-order ''σ''-formula ''φ''(''a''1, …, ''a''''n'') with parameters ''a''1, …, ''a''''n'' from ''N'' is true in ''N'' if and only if it is true in ''M''. If ''N'' is an elementary substructure of ''M'', then ''M'' is called an elementary extension of ''N''. An embedding ''h'': ''N'' → ''M'' is called an elementary embedding of ''N'' into ''M'' if ''h''(''N'') is an elementary substructure of ''M''. A substructure ''N'' of ''M'' is elementary if and only if it passes the Tarski–Vaught test: every first-order formula ''φ''(''x'', ''b''1, …, ''b''''n'') with pa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generic Extension
In the mathematical discipline of set theory, forcing is a technique for proving consistency and independence results. It was first used by Paul Cohen in 1963, to prove the independence of the axiom of choice and the continuum hypothesis from Zermelo–Fraenkel set theory. Forcing has been considerably reworked and simplified in the following years, and has since served as a powerful technique, both in set theory and in areas of mathematical logic such as recursion theory. Descriptive set theory uses the notions of forcing from both recursion theory and set theory. Forcing has also been used in model theory, but it is common in model theory to define genericity directly without mention of forcing. Intuition Intuitively, forcing consists of expanding the set theoretical universe V to a larger universe V^ . In this bigger universe, for example, one might have many new real numbers, identified with subsets of the set \mathbb of natural numbers, that were not there in the old ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binary Relation
In mathematics, a binary relation associates elements of one set, called the ''domain'', with elements of another set, called the ''codomain''. A binary relation over sets and is a new set of ordered pairs consisting of elements in and in . It is a generalization of the more widely understood idea of a unary function. It encodes the common concept of relation: an element is ''related'' to an element , if and only if the pair belongs to the set of ordered pairs that defines the ''binary relation''. A binary relation is the most studied special case of an -ary relation over sets , which is a subset of the Cartesian product X_1 \times \cdots \times X_n. An example of a binary relation is the "divides" relation over the set of prime numbers \mathbb and the set of integers \mathbb, in which each prime is related to each integer that is a multiple of , but not to an integer that is not a multiple of . In this relation, for instance, the prime number 2 is related to numbe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wadge Degree
In descriptive set theory, within mathematics, Wadge degrees are levels of complexity for sets of reals. Sets are compared by continuous reductions. The Wadge hierarchy is the structure of Wadge degrees. These concepts are named after William W. Wadge. Wadge degrees Suppose A and B are subsets of Baire space ωω. Then A is Wadge reducible to B or A ≤W B if there is a continuous function f on ωω with A = f^ /math>. The Wadge order is the preorder or quasiorder on the subsets of Baire space. Equivalence classes of sets under this preorder are called Wadge degrees, the degree of a set A is denoted by A.html" ;"title="math>A">math>Asub>W. The set of Wadge degrees ordered by the Wadge order is called the Wadge hierarchy. Properties of Wadge degrees include their consistency with measures of complexity stated in terms of definability. For example, if A ≤W B and B is a countable intersection of open sets, then so is A. The same works for all levels of the Borel hierarchy a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]