HOME
*



picture info

Tribonacci Number
In mathematics, the Fibonacci numbers form a sequence defined recursion, recursively by: :F_n = \begin 0 & n = 0 \\ 1 & n = 1 \\ F_ + F_ & n > 1 \end That is, after two starting values, each number is the sum of the two preceding numbers. The Fibonacci sequence has been studied extensively and generalized in many ways, for example, by starting with other numbers than 0 and 1, by adding more than two numbers to generate the next number, or by adding objects other than numbers. Extension to negative integers Using F_ = F_n - F_, one can extend the Fibonacci numbers to negative integers. So we get: :... −8, 5, −3, 2, −1, 1, 0, 1, 1, 2, 3, 5, 8, ... and F_ = (-1)^ F_n. See also NegaFibonacci coding. Extension to all real or complex numbers There are a number of possible generalizations of the Fibonacci numbers which include the real numbers (and sometimes the complex numbers) in their domain. These each involve the golden ratio , and are based on Binet's formula :F_n = \frac. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pisano Period
In number theory, the ''n''th Pisano period, written as '(''n''), is the period with which the sequence of Fibonacci numbers taken modulo ''n'' repeats. Pisano periods are named after Leonardo Pisano, better known as Fibonacci. The existence of periodic functions in Fibonacci numbers was noted by Joseph Louis Lagrange in 1774. Definition The Fibonacci numbers are the numbers in the integer sequence: :0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, ... defined by the recurrence relation :F_0 = 0 :F_1 = 1 :F_i = F_ + F_. For any integer ''n'', the sequence of Fibonacci numbers ''Fi'' taken modulo ''n'' is periodic. The Pisano period, denoted '(''n''), is the length of the period of this sequence. For example, the sequence of Fibonacci numbers modulo 3 begins: :0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 0, ... This sequence has period 8, so '(3) = 8. Properties With the exce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

7 (number)
7 (seven) is the natural number following 6 and preceding 8. It is the only prime number preceding a cube. As an early prime number in the series of positive integers, the number seven has greatly symbolic associations in religion, mythology, superstition and philosophy. The seven Classical planets resulted in seven being the number of days in a week. It is often considered lucky in Western culture and is often seen as highly symbolic. Unlike Western culture, in Vietnamese culture, the number seven is sometimes considered unlucky. It is the first natural number whose pronunciation contains more than one syllable. Evolution of the Arabic digit In the beginning, Indians wrote 7 more or less in one stroke as a curve that looks like an uppercase vertically inverted. The western Ghubar Arabs' main contribution was to make the longer line diagonal rather than straight, though they showed some tendencies to making the digit more rectilinear. The eastern Arabs developed the digit fr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

4 (number)
4 (four) is a number, numeral (linguistics), numeral and numerical digit, digit. It is the natural number following 3 and preceding 5. It is the smallest semiprime and composite number, and is tetraphobia, considered unlucky in many East Asian cultures. In mathematics Four is the smallest composite number, its proper divisors being and . Four is the sum and product of two with itself: 2 + 2 = 4 = 2 x 2, the only number b such that a + a = b = a x a, which also makes four the smallest squared prime number p^. In Knuth's up-arrow notation, , and so forth, for any number of up arrows. By consequence, four is the only square one more than a prime number, specifically 3, three. The sum of the first four prime numbers 2, two + 3, three + 5, five + 7, seven is the only sum of four consecutive prime numbers that yields an Parity (mathematics), odd prime number, 17 (number), seventeen, which is the fourth super-prime. Four lies between the first proper pair of twin primes, 3, three and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




2 (number)
2 (two) is a number, numeral and digit. It is the natural number following 1 and preceding 3. It is the smallest and only even prime number. Because it forms the basis of a duality, it has religious and spiritual significance in many cultures. Evolution Arabic digit The digit used in the modern Western world to represent the number 2 traces its roots back to the Indic Brahmic script, where "2" was written as two horizontal lines. The modern Chinese and Japanese languages (and Korean Hanja) still use this method. The Gupta script rotated the two lines 45 degrees, making them diagonal. The top line was sometimes also shortened and had its bottom end curve towards the center of the bottom line. In the Nagari script, the top line was written more like a curve connecting to the bottom line. In the Arabic Ghubar writing, the bottom line was completely vertical, and the digit looked like a dotless closing question mark. Restoring the bottom line to its original horizonta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

1 (number)
1 (one, unit, unity) is a number representing a single or the only entity. 1 is also a numerical digit and represents a single unit of counting or measurement. For example, a line segment of ''unit length'' is a line segment of length 1. In conventions of sign where zero is considered neither positive nor negative, 1 is the first and smallest positive integer. It is also sometimes considered the first of the infinite sequence of natural numbers, followed by  2, although by other definitions 1 is the second natural number, following  0. The fundamental mathematical property of 1 is to be a multiplicative identity, meaning that any number multiplied by 1 equals the same number. Most if not all properties of 1 can be deduced from this. In advanced mathematics, a multiplicative identity is often denoted 1, even if it is not a number. 1 is by convention not considered a prime number; this was not universally accepted until the mid-20th century. Additionally, 1 is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

0 (number)
0 (zero) is a number representing an empty quantity. In place-value notation such as the Hindu–Arabic numeral system, 0 also serves as a placeholder numerical digit, which works by multiplying digits to the left of 0 by the radix, usually by 10. As a number, 0 fulfills a central role in mathematics as the additive identity of the integers, real numbers, and other algebraic structures. Common names for the number 0 in English are ''zero'', ''nought'', ''naught'' (), ''nil''. In contexts where at least one adjacent digit distinguishes it from the letter O, the number is sometimes pronounced as ''oh'' or ''o'' (). Informal or slang terms for 0 include ''zilch'' and ''zip''. Historically, ''ought'', ''aught'' (), and ''cipher'', have also been used. Etymology The word ''zero'' came into the English language via French from the Italian , a contraction of the Venetian form of Italian via ''ṣafira'' or ''ṣifr''. In pre-Islamic time the word (Arabic ) had the meanin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mark Barr
James Mark McGinnis BarrFull name as listed in (May 18, 1871December 15, 1950) was an electrical engineer, physicist, inventor, and polymath known for proposing the standard notation for the golden ratio. Born in America, but with English citizenship, Barr lived in both London and New York City at different times of his life. Though remembered primarily for his contributions to abstract mathematics, Barr put much of his efforts over the years into the design of machines, including calculating machines. He won a gold medal at the 1900 Paris Exposition Universelle for an extremely accurate engraving machine. Life Barr was born in Pennsylvania, the son of Charles B. Barr and Ann M'Ginnis. He was educated in London, then worked for the Westinghouse Electric Company in Pittsburgh from 1887 to 1890. He started there as a draughtsman before becoming a laboratory assistant, and later an erection engineer. For two years in the early 1890s, he worked in New York City at the journal ''E ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Composition (number Theory)
In mathematics, a composition of an integer ''n'' is a way of writing ''n'' as the sum of a sequence of (strictly) positive integers. Two sequences that differ in the order of their terms define different compositions of their sum, while they are considered to define the same partition of that number. Every integer has finitely many distinct compositions. Negative numbers do not have any compositions, but 0 has one composition, the empty sequence. Each positive integer ''n'' has distinct compositions. A weak composition of an integer ''n'' is similar to a composition of ''n'', but allowing terms of the sequence to be zero: it is a way of writing ''n'' as the sum of a sequence of non-negative integers. As a consequence every positive integer admits infinitely many weak compositions (if their length is not bounded). Adding a number of terms 0 to the ''end'' of a weak composition is usually not considered to define a different weak composition; in other words, weak compositions are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Silver Ratio
In mathematics, two quantities are in the silver ratio (or silver mean) if the ratio of the smaller of those two quantities to the larger quantity is the same as the ratio of the larger quantity to the sum of the smaller quantity and twice the larger quantity (see below). This defines the silver ratio as an irrational mathematical constant, whose value of one plus the square root of 2 is approximately 2.4142135623. Its name is an allusion to the golden ratio; analogously to the way the golden ratio is the limiting ratio of consecutive Fibonacci numbers, the silver ratio is the limiting ratio of consecutive Pell numbers. The silver ratio is denoted by . Mathematicians have studied the silver ratio since the time of the Greeks (although perhaps without giving a special name until recently) because of its connections to the square root of 2, its convergents, square triangular numbers, Pell numbers, octagons and the like. The relation described above can be expressed algebraical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Zero Of A Function
In mathematics, a zero (also sometimes called a root) of a real-, complex-, or generally vector-valued function f, is a member x of the domain of f such that f(x) ''vanishes'' at x; that is, the function f attains the value of 0 at x, or equivalently, x is the solution to the equation f(x) = 0. A "zero" of a function is thus an input value that produces an output of 0. A root of a polynomial is a zero of the corresponding polynomial function. The fundamental theorem of algebra shows that any non-zero polynomial has a number of roots at most equal to its degree, and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an algebraically closed extension) counted with their multiplicities. For example, the polynomial f of degree two, defined by f(x)=x^2-5x+6 has the two roots (or zeros) that are 2 and 3. f(2)=2^2-5\times 2+6= 0\textf(3)=3^2-5\times 3+6=0. If the function maps real numbers to real numbers, then it ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Metallic Mean
The metallic means (also ratios or constants) of the successive natural numbers are the continued fractions: n + \cfrac = ;n,n,n,n,\dots= \frac. The golden ratio (1.618...) is the metallic mean between 1 and 2, while the silver ratio (2.414...) is the metallic mean between 2 and 3. The term "bronze ratio" (3.303...), or terms using other names of metals (such as copper or nickel), are occasionally used to name subsequent metallic means. The values of the first ten metallic means are shown at right. Notice that each metallic mean is a root of the simple quadratic equation: x^2-nx=1, where n is any positive natural number. As the golden ratio is connected to the pentagon (first diagonal/side), the silver ratio is connected to the octagon (second diagonal/side). As the golden ratio is connected to the Fibonacci numbers, the silver ratio is connected to the Pell numbers, and the bronze ratio is connected to . Each Fibonacci number is the sum of the previous number times one plus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]