Silver Ratio
In mathematics, two quantities are in the silver ratio (or silver mean) if the ratio of the smaller of those two quantities to the larger quantity is the same as the ratio of the larger quantity to the sum of the smaller quantity and twice the larger quantity (see below). This defines the silver ratio as an irrational mathematical constant, whose value of one plus the square root of 2 is approximately 2.4142135623. Its name is an allusion to the golden ratio; analogously to the way the golden ratio is the limiting ratio of consecutive Fibonacci numbers, the silver ratio is the limiting ratio of consecutive Pell numbers. The silver ratio is denoted by . Mathematicians have studied the silver ratio since the time of the Greeks (although perhaps without giving a special name until recently) because of its connections to the square root of 2, its convergents, square triangular numbers, Pell numbers, octagons and the like. The relation described above can be expressed algebraical ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Silver Ratio Octagon
Silver is a chemical element with the symbol Ag (from the Latin ', derived from the Proto-Indo-European ''h₂erǵ'': "shiny" or "white") and atomic number 47. A soft, white, lustrous transition metal, it exhibits the highest electrical conductivity, thermal conductivity, and reflectivity of any metal. The metal is found in the Earth's crust in the pure, free elemental form ("native silver"), as an alloy with gold and other metals, and in minerals such as argentite and chlorargyrite. Most silver is produced as a byproduct of copper, gold, lead, and zinc refining. Silver has long been valued as a precious metal. Silver metal is used in many bullion coins, sometimes alongside gold: while it is more abundant than gold, it is much less abundant as a native metal. Its purity is typically measured on a per-mille basis; a 94%-pure alloy is described as "0.940 fine". As one of the seven metals of antiquity, silver has had an enduring role in most human cultures. Other than in curre ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Diophantine Approximation
In number theory, the study of Diophantine approximation deals with the approximation of real numbers by rational numbers. It is named after Diophantus of Alexandria. The first problem was to know how well a real number can be approximated by rational numbers. For this problem, a rational number ''a''/''b'' is a "good" approximation of a real number ''α'' if the absolute value of the difference between ''a''/''b'' and ''α'' may not decrease if ''a''/''b'' is replaced by another rational number with a smaller denominator. This problem was solved during the 18th century by means of continued fractions. Knowing the "best" approximations of a given number, the main problem of the field is to find sharp upper and lower bounds of the above difference, expressed as a function of the denominator. It appears that these bounds depend on the nature of the real numbers to be approximated: the lower bound for the approximation of a rational number by another rational number is larger than ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical Constants
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. Constants arise in many areas of mathematics, with constants such as and occurring in such diverse contexts as geometry, number theory, statistics, and calculus. What it means for a constant to arise "naturally", and what makes a constant "interesting", is ultimately a matter of taste, with some mathematical constants being notable more for historical reasons than for their intrinsic mathematical interest. The more popular constants have been studied throughout the ages and computed to many decimal places. All named mathematical constants are definable numbers, and usually are also computable numbers (Chaitin's constant being a significant exception). Basic mathematical constants These are constants which one is likely to encounter du ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quadratic Irrational Numbers
In mathematics, a quadratic irrational number (also known as a quadratic irrational, a quadratic irrationality or quadratic surd) is an irrational number that is the solution to some quadratic equation with rational coefficients which is irreducible over the rational numbers. Since fractions in the coefficients of a quadratic equation can be cleared by multiplying both sides by their least common denominator, a quadratic irrational is an irrational root of some quadratic equation with integer coefficients. The quadratic irrational numbers, a subset of the complex numbers, are algebraic numbers of degree 2, and can therefore be expressed as :, for integers ; with , and non-zero, and with square-free. When is positive, we get real quadratic irrational numbers, while a negative gives complex quadratic irrational numbers which are not real numbers. This defines an injection from the quadratic irrationals to quadruples of integers, so their cardinality is at most countable; since ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Continued Fractions
In mathematics, a continued fraction is an expression obtained through an iterative process of representing a number as the sum of its integer part and the reciprocal of another number, then writing this other number as the sum of its integer part and another reciprocal, and so on. In a finite continued fraction (or terminated continued fraction), the iteration/recursion is terminated after finitely many steps by using an integer in lieu of another continued fraction. In contrast, an infinite continued fraction is an infinite expression. In either case, all integers in the sequence, other than the first, must be positive. The integers a_i are called the coefficients or terms of the continued fraction. It is generally assumed that the numerator of all of the fractions is 1. If arbitrary values and/or functions are used in place of one or more of the numerators or the integers in the denominators, the resulting expression is a generalized continued fraction. When it is necessary t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ammann–Beenker Tiling
In geometry, an Ammann–Beenker tiling is a nonperiodic tiling which can be generated either by an aperiodic set of prototiles as done by Robert Ammann in the 1970s, or by the cut-and-project method as done independently by F. P. M. Beenker. They are one of the five sets of tilings discovered by Ammann and described in ''Tilings and Patterns''. The Ammann–Beenker tilings have many properties similar to the more famous Penrose tilings: *They are nonperiodic, which means that they lack any translational symmetry. *Their non-periodicity is implied by their hierarchical structure: the tilings are substitution tilings arising from substitution rules for growing larger and larger patches. This substitution structure also implies that: *Any finite region (patch) in a tiling appears infinitely many times in that tiling and, in fact, in any other tiling. Thus, the infinite tilings all look similar to one another, if one looks only at finite patches. *They are quasicrystalline: implemen ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Metallic Mean
The metallic means (also ratios or constants) of the successive natural numbers are the continued fractions: n + \cfrac = ;n,n,n,n,\dots= \frac. The golden ratio (1.618...) is the metallic mean between 1 and 2, while the silver ratio (2.414...) is the metallic mean between 2 and 3. The term "bronze ratio" (3.303...), or terms using other names of metals (such as copper or nickel), are occasionally used to name subsequent metallic means. The values of the first ten metallic means are shown at right. Notice that each metallic mean is a root of the simple quadratic equation: x^2-nx=1, where n is any positive natural number. As the golden ratio is connected to the pentagon (first diagonal/side), the silver ratio is connected to the octagon (second diagonal/side). As the golden ratio is connected to the Fibonacci numbers, the silver ratio is connected to the Pell numbers, and the bronze ratio is connected to . Each Fibonacci number is the sum of the previous number times one plus ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Binet's Formula
In mathematics, the Fibonacci numbers, commonly denoted , form a sequence, the Fibonacci sequence, in which each number is the sum of the two preceding ones. The sequence commonly starts from 0 and 1, although some authors start the sequence from 1 and 1 or sometimes (as did Fibonacci) from 1 and 2. Starting from 0 and 1, the first few values in the sequence are: :0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144. The Fibonacci numbers were first described in Indian mathematics, as early as 200 BC in work by Pingala on enumerating possible patterns of Sanskrit poetry formed from syllables of two lengths. They are named after the Italian mathematician Leonardo of Pisa, later known as Fibonacci, who introduced the sequence to Western European mathematics in his 1202 book ''Liber Abaci''. Fibonacci numbers appear unexpectedly often in mathematics, so much so that there is an entire journal dedicated to their study, the ''Fibonacci Quarterly''. Applications of Fibonacci numbers include co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Equidistributed Sequence
In mathematics, a sequence (''s''1, ''s''2, ''s''3, ...) of real numbers is said to be equidistributed, or uniformly distributed, if the proportion of terms falling in a subinterval is proportional to the length of that subinterval. Such sequences are studied in Diophantine approximation theory and have applications to Monte Carlo integration. Definition A sequence (''s''1, ''s''2, ''s''3, ...) of real numbers is said to be ''equidistributed'' on a non-degenerate interval 'a'', ''b''if for every subinterval 'c'', ''d''of 'a'', ''b''we have :\lim_= . (Here, the notation , ∩ 'c'', ''d'' denotes the number of elements, out of the first ''n'' elements of the sequence, that are between ''c'' and ''d''.) For example, if a sequence is equidistributed in , 2 since the interval .5, 0.9occupies 1/5 of the length of the interval , 2 as ''n'' becomes large, the proportion of the first ''n'' members of the sequence which fall between 0.5 and 0.9 must approach 1/5. Lo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fractional Part
The fractional part or decimal part of a non‐negative real number x is the excess beyond that number's integer part. If the latter is defined as the largest integer not greater than , called floor of or \lfloor x\rfloor, its fractional part can be written as: :\operatorname (x)=x - \lfloor x \rfloor,\; x > 0. For a positive number written in a conventional positional numeral system (such as binary or decimal), its fractional part hence corresponds to the digits appearing after the radix point. The result is a real number in the half-open interval x, -\lfloor , x, \rfloor , or by the Weisstein,_Eric_W._"Fractional_Part."_From_MathWorld--A_Wolfram_Web_Resource /ref> : |
|
Pisot–Vijayaraghavan Number
In mathematics, a Pisot–Vijayaraghavan number, also called simply a Pisot number or a PV number, is a real algebraic integer greater than 1, all of whose Galois conjugates are less than 1 in absolute value. These numbers were discovered by Axel Thue in 1912 and rediscovered by G. H. Hardy in 1919 within the context of diophantine approximation. They became widely known after the publication of Charles Pisot's dissertation in 1938. They also occur in the uniqueness problem for Fourier series. Tirukkannapuram Vijayaraghavan and Raphael Salem continued their study in the 1940s. Salem numbers are a closely related set of numbers. A characteristic property of PV numbers is that their powers approach integers at an exponential rate. Pisot proved a remarkable converse: if ''α'' > 1 is a real number such that the sequence : \, \alpha^n\, measuring the distance from its consecutive powers to the nearest integer is square-summable, or ''ℓ'' 2, then ''α'' is a Pisot n ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Silver Spiral Approximation
Silver is a chemical element with the symbol Ag (from the Latin ', derived from the Proto-Indo-European ''h₂erǵ'': "shiny" or "white") and atomic number 47. A soft, white, lustrous transition metal, it exhibits the highest electrical conductivity, thermal conductivity, and reflectivity of any metal. The metal is found in the Earth's crust in the pure, free elemental form ("native silver"), as an alloy with gold and other metals, and in minerals such as argentite and chlorargyrite. Most silver is produced as a byproduct of copper, gold, lead, and zinc refining. Silver has long been valued as a precious metal. Silver metal is used in many bullion coins, sometimes alongside gold: while it is more abundant than gold, it is much less abundant as a native metal. Its purity is typically measured on a per-mille basis; a 94%-pure alloy is described as "0.940 fine". As one of the seven metals of antiquity, silver has had an enduring role in most human cultures. Other than in curre ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |