Throughput
Network throughput (or just throughput, when in context) refers to the rate of message delivery over a communication channel, such as Ethernet or packet radio, in a communication network. The data that these messages contain may be delivered over physical or logical links, or through network nodes. Throughput is usually measured in bits per second (bit/s or bps), and sometimes in data packets per second (p/s or pps) or data packets per time slot. The system throughput or aggregate throughput is the sum of the data rates that are delivered to all terminals in a network. Throughput is essentially synonymous to digital bandwidth consumption; it can be determined numerically by applying the queueing theory, where the load in packets per time unit is denoted as the arrival rate (), and the drop in packets per unit time is denoted as the departure rate (). The throughput of a communication system may be affected by various factors, including the limitations of the underlying anal ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Maximum Throughput
Network throughput (or just throughput, when in context) refers to the rate of message delivery over a communication channel, such as Ethernet or packet radio, in a communication network. The data that these messages contain may be delivered over physical or logical links, or through network nodes. Throughput is usually measured in bits per second (bit/s or bps), and sometimes in data packets per second (p/s or pps) or data packets per time slot. The system throughput or aggregate throughput is the sum of the data rates that are delivered to all terminals in a network. Throughput is essentially synonymous to digital bandwidth consumption; it can be determined numerically by applying the queueing theory, where the load in packets per time unit is denoted as the arrival rate (), and the drop in packets per unit time is denoted as the departure rate (). The throughput of a communication system may be affected by various factors, including the limitations of the underlying analog ph ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Data Bandwidth
In computing, bandwidth is the maximum rate of data transfer across a given path. Bandwidth may be characterized as network bandwidth, data bandwidth, or digital bandwidth. This definition of ''bandwidth'' is in contrast to the field of signal processing, wireless communications, modem data transmission, digital communications, and electronics, in which ''bandwidth'' is used to refer to analog signal bandwidth measured in hertz, meaning the frequency range between lowest and highest attainable frequency while meeting a well-defined impairment level in signal power. The actual bit rate that can be achieved depends not only on the signal bandwidth but also on the noise on the channel. Network capacity The term ''bandwidth'' sometimes defines the net bit rate 'peak bit rate', 'information rate,' or physical layer 'useful bit rate', channel capacity, or the maximum throughput of a logical or physical communication path in a digital communication system. For example, bandwid ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Digital Bandwidth Consumption
In computing, bandwidth is the maximum rate of data transfer across a given path. Bandwidth may be characterized as network bandwidth, data bandwidth, or digital bandwidth. This definition of ''bandwidth'' is in contrast to the field of signal processing, wireless communications, modem data transmission, digital communications, and electronics, in which ''bandwidth'' is used to refer to analog signal bandwidth measured in hertz, meaning the frequency range between lowest and highest attainable frequency while meeting a well-defined impairment level in signal power. The actual bit rate that can be achieved depends not only on the signal bandwidth but also on the noise on the channel. Network capacity The term ''bandwidth'' sometimes defines the net bit rate 'peak bit rate', 'information rate,' or physical layer 'useful bit rate', channel capacity, or the maximum throughput of a logical or physical communication path in a digital communication system. For example, bandwidth test ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Digital Bandwidth Capacity
In computing, bandwidth is the maximum rate of data transfer across a given path. Bandwidth may be characterized as network bandwidth, data bandwidth, or digital bandwidth. This definition of ''bandwidth'' is in contrast to the field of signal processing, wireless communications, modem data transmission, digital communications, and electronics, in which ''bandwidth'' is used to refer to analog signal bandwidth measured in hertz, meaning the frequency range between lowest and highest attainable frequency while meeting a well-defined impairment level in signal power. The actual bit rate that can be achieved depends not only on the signal bandwidth but also on the noise on the channel. Network capacity The term ''bandwidth'' sometimes defines the net bit rate 'peak bit rate', 'information rate,' or physical layer 'useful bit rate', channel capacity, or the maximum throughput of a logical or physical communication path in a digital communication system. For example, bandwidth test ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bits Per Second
In telecommunications and computing, bit rate (bitrate or as a variable ''R'') is the number of bits that are conveyed or processed per unit of time. The bit rate is expressed in the unit bit per second (symbol: bit/s), often in conjunction with an SI prefix such as kilo-, kilo (1 kbit/s = 1,000 bit/s), mega-, mega (1 Mbit/s = 1,000 kbit/s), giga-, giga (1 Gbit/s = 1,000 Mbit/s) or tera-, tera (1 Tbit/s = 1,000 Gbit/s). The non-standard abbreviation bps is often used to replace the standard symbol bit/s, so that, for example, 1 Mbps is used to mean one million bits per second. In most computing and digital communication environments, one byte per second (symbol: B/s) corresponds to 8 bit/s. Prefixes When quantifying large or small bit rates, SI prefixes (also known as metric prefixes or decimal prefixes) are used, thus: Binary prefixes are sometimes used for bit rates. The International Standard (IEC 8000 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bit Rate
In telecommunications and computing, bit rate (bitrate or as a variable ''R'') is the number of bits that are conveyed or processed per unit of time. The bit rate is expressed in the unit bit per second (symbol: bit/s), often in conjunction with an SI prefix such as kilo (1 kbit/s = 1,000 bit/s), mega (1 Mbit/s = 1,000 kbit/s), giga (1 Gbit/s = 1,000 Mbit/s) or tera (1 Tbit/s = 1,000 Gbit/s). The non-standard abbreviation bps is often used to replace the standard symbol bit/s, so that, for example, 1 Mbps is used to mean one million bits per second. In most computing and digital communication environments, one byte per second (symbol: B/s) corresponds to 8 bit/s. Prefixes When quantifying large or small bit rates, SI prefixes (also known as metric prefixes or decimal prefixes) are used, thus: Binary prefixes are sometimes used for bit rates. The International Standard ( IEC 80000-13) specifies differe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Goodput
In computer networks, goodput (a portmanteau of good and throughput) is the application-level throughput of a communication; i.e. the number of useful information bits delivered by the network to a certain destination per unit of time. The amount of data considered excludes protocol overhead bits as well as retransmitted data packets. This is related to the amount of time from the first bit of the first packet sent (or delivered) until the last bit of the last packet is delivered. For example, if a file is transferred, the goodput that the user experiences corresponds to the file size in bits divided by the file transfer time. The goodput is always lower than the throughput (the gross bit rate that is transferred physically), which generally is lower than network access connection speed (the channel capacity or bandwidth). Examples of factors that cause lower goodput than throughput are: * ''Protocol overhead'': Typically, transport layer, network layer and sometimes datalin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ethernet
Ethernet () is a family of wired computer networking technologies commonly used in local area networks (LAN), metropolitan area networks (MAN) and wide area networks (WAN). It was commercially introduced in 1980 and first standardized in 1983 as IEEE 802.3. Ethernet has since been refined to support higher bit rates, a greater number of nodes, and longer link distances, but retains much backward compatibility. Over time, Ethernet has largely replaced competing wired LAN technologies such as Token Ring, FDDI and ARCNET. The original 10BASE5 Ethernet uses coaxial cable as a shared medium, while the newer Ethernet variants use twisted pair and fiber optic links in conjunction with switches. Over the course of its history, Ethernet data transfer rates have been increased from the original to the latest , with rates up to under development. The Ethernet standards include several wiring and signaling variants of the OSI physical layer. Systems communicating over ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Queueing Theory
Queueing theory is the mathematical study of waiting lines, or queues. A queueing model is constructed so that queue lengths and waiting time can be predicted. Queueing theory is generally considered a branch of operations research because the results are often used when making business decisions about the resources needed to provide a service. Queueing theory has its origins in research by Agner Krarup Erlang when he created models to describe the system of Copenhagen Telephone Exchange company, a Danish company. The ideas have since seen applications including telecommunication, traffic engineering, computing and, particularly in industrial engineering, in the design of factories, shops, offices and hospitals, as well as in project management. Spelling The spelling "queueing" over "queuing" is typically encountered in the academic research field. In fact, one of the flagship journals of the field is ''Queueing Systems''. Single queueing nodes A queue, or queueing no ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Latency (engineering)
Latency, from a general point of view, is a time delay between the cause and the effect of some physical change in the system being observed. Lag, as it is known in gaming circles, refers to the latency between the input to a simulation and the visual or auditory response, often occurring because of network delay in online games. Latency is physically a consequence of the limited velocity at which any physical interaction can propagate. The magnitude of this velocity is always less than or equal to the speed of light. Therefore, every physical system with any physical separation (distance) between cause and effect will experience some sort of latency, regardless of the nature of the stimulation at which it has been exposed to. The precise definition of latency depends on the system being observed or the nature of the simulation. In communications, the lower limit of latency is determined by the medium being used to transfer information. In reliable two-way communication ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Packet Radio
In digital radio, packet radio is the application of packet switching techniques to digital radio communications. Packet radio uses a packet switching protocol as opposed to circuit switching or message switching protocols to transmit digital data via a radio communication link. Packet radio can be differentiated from other digital radio switching schemes by the following attributes: * Transmitted data is broken into packets, each of which contains a destination (and typically the source) address * A transmitted message may be broken into a sequence of packets before transmission, which are then re-assembled into the original message upon reception * Packets for multiple destinations can be transmitted on the same radio link in an asynchronous fashion * A packet may be addressed to all possible recipients rather than a specific one (broadcast) * A packet may be stored and subsequently forwarded towards its destination by a network node This is very similar to how packets of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Transmission Control Protocol
The Transmission Control Protocol (TCP) is one of the main protocols of the Internet protocol suite. It originated in the initial network implementation in which it complemented the Internet Protocol (IP). Therefore, the entire suite is commonly referred to as TCP/IP. TCP provides reliable, ordered, and error-checked delivery of a stream of octets (bytes) between applications running on hosts communicating via an IP network. Major internet applications such as the World Wide Web, email, remote administration, and file transfer rely on TCP, which is part of the Transport Layer of the TCP/IP suite. SSL/TLS often runs on top of TCP. TCP is connection-oriented, and a connection between client and server is established before data can be sent. The server must be listening (passive open) for connection requests from clients before a connection is established. Three-way handshake (active open), retransmission, and error detection adds to reliability but lengthens latency. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |