HOME
*



picture info

Taylor–Couette Flow
In fluid dynamics, the Taylor–Couette flow consists of a viscous fluid confined in the gap between two rotating cylinders. For low angular velocities, measured by the Reynolds number ''Re'', the flow is steady and purely azimuthal. This basic state is known as circular Couette flow, after Maurice Marie Alfred Couette, who used this experimental device as a means to measure viscosity. Sir Geoffrey Ingram Taylor investigated the stability of Couette flow in a ground-breaking paper. Taylor's paper became a cornerstone in the development of hydrodynamic stability theory and demonstrated that the no-slip condition, which was in dispute by the scientific community at the time, was the correct boundary condition for viscous flows at a solid boundary. Taylor showed that when the angular velocity of the inner cylinder is increased above a certain threshold, Couette flow becomes unstable and a secondary steady state characterized by axisymmetric toroidal vortices, known as Taylor vortex f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

John William Strutt, 3rd Baron Rayleigh
John William Strutt, 3rd Baron Rayleigh, (; 12 November 1842 – 30 June 1919) was an English mathematician and physicist who made extensive contributions to science. He spent all of his academic career at the University of Cambridge. Among many honors, he received the 1904 Nobel Prize in Physics "for his investigations of the densities of the most important gases and for his discovery of argon in connection with these studies." He served as president of the Royal Society from 1905 to 1908 and as chancellor of the University of Cambridge from 1908 to 1919. Rayleigh provided the first theoretical treatment of the elastic scattering of light by particles much smaller than the light's wavelength, a phenomenon now known as "Rayleigh scattering", which notably explains why the sky is blue. He studied and described transverse surface waves in solids, now known as "Rayleigh waves". He contributed extensively to fluid dynamics, with concepts such as the Rayleigh number (a dimensio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


David Ruelle
David Pierre Ruelle (; born 20 August 1935) is a Belgian mathematical physicist, naturalized French. He has worked on statistical physics and dynamical systems. With Floris Takens, Ruelle coined the term ''strange attractor'', and developed a new theory of turbulence. Biography Ruelle studied physics at the Université Libre de Bruxelles, obtaining a PhD degree in 1959 under the supervision of Res Jost. He spent two years (1960–1962) at the ETH Zurich, and another two years (1962–1964) at the Institute for Advanced Study in Princeton, New Jersey. In 1964, he became professor at the Institut des Hautes Études Scientifiques in Bures-sur-Yvette, France. Since 2000, he has been an emeritus professor at IHES and distinguished visiting professor at Rutgers University. David Ruelle made fundamental contributions in various aspects of mathematical physics. In quantum field theory, the most important contribution is the rigorous formulation of scattering processes based on Wigh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Floris Takens
Floris Takens (12 November 1940 – 20 June 2010) was a Dutch mathematician known for contributions to the theory of chaotic dynamical systems. Together with David Ruelle, he predicted that fluid turbulence could develop through a strange attractor, a term they coined, as opposed to the then-prevailing theory of accretion of modes. The prediction was later confirmed by experiment. Takens also established the result now known as the Takens's theorem, which shows how to reconstruct a dynamical system from an observed time-series. He was the first to show how chaotic attractors could be learned by neural networks. Takens was born in Zaandam in the Netherlands. He attended schools in The Hague and in Zaandam before serving in the Dutch army for one year (1960–1961). At the University of Amsterdam he concluded his undergraduate and graduate studies. He was granted a doctorate in mathematics in 1969 under the supervision of Nicolaas Kuiper for a thesis entitled ''The minimal number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Harry Swinney
Harry L. Swinney (born April 10, 1939) is an American physicist noted for his contributions to the field of nonlinear dynamics. Personal life Harry Leonard Swinney was born in Opelousas, Louisiana, on April 10, 1939. His parents were Leonard R. Swinney and Ethel Bertheaud Swinney. In 1967 Harry Swinney married Gloria T. Luyas, and in 1978 they had a son, Brent Luyas Swinney. Brent died of cancer in 1995 and Gloria died of cancer in 1997. Harry Swinney married Lizabeth Kelley on August 12, 2000. Education Swinney attended elementary school in Austin, Texas, and in 1957 graduated from Homer Louisiana High School. In 1961 he was awarded a B.S. with honors in physics by Southwestern at Memphis (now Rhodes College), where he was inspired by his physics professor and research mentor, Jack H. Taylor. In 1968 he was awarded a Ph.D. in physics by Johns Hopkins University; his advisor was Herman Z. Cummins. Career Swinney was an assistant professor of physics at New York University (197 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Fluid Mechanics
The ''Journal of Fluid Mechanics'' is a peer-reviewed scientific journal in the field of fluid mechanics. It publishes original work on theoretical, computational, and experimental aspects of the subject. The journal is published by Cambridge University Press and retains a strong association with the University of Cambridge, in particular the Department of Applied Mathematics and Theoretical Physics (DAMTP). Until January 2020, volumes were published twice a month in a single-column B5 format, but the publication is now online-only with the same frequency. The journal was established in 1956 by George Batchelor, who remained the editor-in-chief for some forty years. He started out as the sole editor, but later a team of associate editors provided assistance in arranging the review of articles. John W. Miles is the author who has most papers (117 times) appeared in this journal. Editors The following people have been editor (later, editor in chief) of the ''Journal of Fluid Me ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fluid Mechanics
Fluid mechanics is the branch of physics concerned with the mechanics of fluids ( liquids, gases, and plasmas) and the forces on them. It has applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical and biomedical engineering, geophysics, oceanography, meteorology, astrophysics, and biology. It can be divided into fluid statics, the study of fluids at rest; and fluid dynamics, the study of the effect of forces on fluid motion. It is a branch of continuum mechanics, a subject which models matter without using the information that it is made out of atoms; that is, it models matter from a ''macroscopic'' viewpoint rather than from ''microscopic''. Fluid mechanics, especially fluid dynamics, is an active field of research, typically mathematically complex. Many problems are partly or wholly unsolved and are best addressed by numerical methods, typically using computers. A modern discipline, called computational fluid dynamics (CFD), is dev ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Instability
In numerous fields of study, the component of instability within a system is generally characterized by some of the outputs or internal states growing without bounds. Not all systems that are not stable are unstable; systems can also be marginally stable or exhibit limit cycle behavior. In structural engineering, a structure can become unstable when excessive load is applied. Beyond a certain threshold, structural deflections magnify stresses, which in turn increases deflections. This can take the form of buckling or crippling. The general field of study is called structural stability. Atmospheric instability is a major component of all weather systems on Earth. Instability in control systems In the theory of dynamical systems, a state variable in a system is said to be unstable if it evolves without bounds. A system itself is said to be unstable if at least one of its state variables is unstable. In continuous time control theory, a system is unstable if any of the ro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Taylor Number
In fluid dynamics, the Taylor number (Ta) is a dimensionless quantity that characterizes the importance of centrifugal "forces" or so-called inertial forces due to rotation of a fluid about an axis, relative to viscous forces. In 1923 Geoffrey Ingram Taylor introduced this quantity in his article on the stability of flow. The typical context of the Taylor number is in characterization of the Couette flow between rotating colinear cylinders or rotating concentric spheres. In the case of a system which is not rotating uniformly, such as the case of cylindrical Couette flow, where the outer cylinder is stationary and the inner cylinder is rotating, inertial forces will often tend to destabilize a system, whereas viscous forces tend to stabilize a system and damp out perturbations and turbulence. On the other hand, in other cases the effect of rotation can be stabilizing. For example, in the case of cylindrical Couette flow with positive Rayleigh discriminant, there are no axisymmet ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vortex
In fluid dynamics, a vortex ( : vortices or vortexes) is a region in a fluid in which the flow revolves around an axis line, which may be straight or curved. Vortices form in stirred fluids, and may be observed in smoke rings, whirlpools in the wake of a boat, and the winds surrounding a tropical cyclone, tornado or dust devil. Vortices are a major component of turbulent flow. The distribution of velocity, vorticity (the curl of the flow velocity), as well as the concept of circulation are used to characterise vortices. In most vortices, the fluid flow velocity is greatest next to its axis and decreases in inverse proportion to the distance from the axis. In the absence of external forces, viscous friction within the fluid tends to organise the flow into a collection of irrotational vortices, possibly superimposed to larger-scale flows, including larger-scale vortices. Once formed, vortices can move, stretch, twist, and interact in complex ways. A moving vortex carries s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]