HOME

TheInfoList



OR:

In
fluid dynamics In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids— liquids and gases. It has several subdisciplines, including ''aerodynamics'' (the study of air and other gases in motion) an ...
, the Taylor number (Ta) is a
dimensionless quantity A dimensionless quantity (also known as a bare quantity, pure quantity, or scalar quantity as well as quantity of dimension one) is a quantity to which no physical dimension is assigned, with a corresponding SI unit of measurement of one (or 1) ...
that characterizes the importance of centrifugal "forces" or so-called inertial forces due to
rotation Rotation, or spin, is the circular movement of an object around a '' central axis''. A two-dimensional rotating object has only one possible central axis and can rotate in either a clockwise or counterclockwise direction. A three-dimensional ...
of a
fluid In physics, a fluid is a liquid, gas, or other material that continuously deforms (''flows'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are substances which cannot resist any shear ...
about an axis, relative to
viscous forces The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the inter ...
. In 1923
Geoffrey Ingram Taylor Sir Geoffrey Ingram Taylor OM FRS FRSE (7 March 1886 – 27 June 1975) was a British physicist and mathematician, and a major figure in fluid dynamics and wave theory. His biographer and one-time student, George Batchelor, described him as " ...
introduced this quantity in his article on the stability of flow. The typical context of the Taylor number is in characterization of the
Couette flow In fluid dynamics, Couette flow is the flow of a viscous fluid in the space between two surfaces, one of which is moving tangentially relative to the other. The relative motion of the surfaces imposes a shear stress on the fluid and induces flow. ...
between rotating colinear cylinders or rotating concentric spheres. In the case of a system which is not rotating uniformly, such as the case of cylindrical Couette flow, where the outer cylinder is stationary and the inner cylinder is rotating, inertial forces will often tend to destabilize a system, whereas viscous forces tend to stabilize a system and damp out perturbations and turbulence. On the other hand, in other cases the effect of rotation can be stabilizing. For example, in the case of cylindrical Couette flow with positive Rayleigh discriminant, there are no axisymmetric instabilities. Another example is a bucket of water that is rotating uniformly (i.e. undergoing solid body rotation). Here the fluid is subject to the Taylor-Proudman theorem which says that small motions will tend to produce purely two-dimensional perturbations to the overall rotational flow. However, in this case the effects of rotation and viscosity are usually characterized by the
Ekman number The Ekman number (Ek) is a dimensionless number used in fluid dynamics to describe the ratio of viscous forces to Coriolis forces. It is frequently used in describing geophysical phenomena in the oceans and atmosphere in order to characterise the r ...
and the
Rossby number The Rossby number (Ro), named for Carl-Gustav Arvid Rossby, is a dimensionless number used in describing fluid flow. The Rossby number is the ratio of inertial force to Coriolis force, terms , \mathbf \cdot \nabla \mathbf, \sim U^2 / L and \Omega ...
rather than by the Taylor number. There are various definitions of the Taylor number which are not all equivalent, but most commonly it is given by : \mathrm=\frac where \Omega is a characteristic angular velocity, ''R'' is a characteristic linear dimension perpendicular to the rotation axis, and \nu is the kinematic
viscosity The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the inte ...
. In the case of inertial instability such as
Taylor–Couette flow In fluid dynamics, the Taylor–Couette flow consists of a viscous fluid confined in the gap between two rotating cylinders. For low angular velocities, measured by the Reynolds number ''Re'', the flow is steady and purely azimuthal. This basic s ...
, the Taylor number is mathematically analogous to the Grashof number which characterizes the strength of buoyant forces relative to viscous forces in convection. When the former exceeds the latter by a critical ratio, convective instability sets in. Likewise, in various systems and geometries, when the Taylor number exceeds a critical value, inertial instabilities set in, sometimes known as Taylor instabilities, which may lead to Taylor vortices or cells. A Taylor–Couette flow describes the fluid behavior between 2 concentric cylinders in rotation. A
textbook A textbook is a book containing a comprehensive compilation of content in a branch of study with the intention of explaining it. Textbooks are produced to meet the needs of educators, usually at educational institutions. Schoolbooks are textboo ...
definition of the Taylor number is M. Frank White, ''Fluid Mechanics'', 3rd edition,
McGraw-Hill McGraw Hill is an American educational publishing company and one of the "big three" educational publishers that publishes educational content, software, and services for pre-K through postgraduate education. The company also publishes referenc ...
, eq.4.147 at page 239,
: \mathrm=\frac where ''R''1 is the internal radius of the internal cylinder, and ''R''2 is the external radius of the external cylinder. The critical Ta is about 1700.


References

{{DEFAULTSORT:Taylor Number Fluid dynamics Dimensionless numbers Dimensionless numbers of fluid mechanics