HOME

TheInfoList



OR:

Fluid mechanics is the branch of physics concerned with the mechanics of
fluid In physics, a fluid is a liquid, gas, or other material that continuously deforms (''flows'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are substances which cannot resist any shear ...
s (
liquid A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. As such, it is one of the four fundamental states of matter (the others being solid, gas, a ...
s, gases, and
plasma Plasma or plasm may refer to: Science * Plasma (physics), one of the four fundamental states of matter * Plasma (mineral), a green translucent silica mineral * Quark–gluon plasma, a state of matter in quantum chromodynamics Biology * Blood pla ...
s) and the
force In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a p ...
s on them. It has applications in a wide range of disciplines, including mechanical, aerospace,
civil Civil may refer to: *Civic virtue, or civility *Civil action, or lawsuit * Civil affairs *Civil and political rights *Civil disobedience *Civil engineering *Civil (journalism), a platform for independent journalism *Civilian, someone not a membe ...
, chemical and biomedical engineering, geophysics,
oceanography Oceanography (), also known as oceanology and ocean science, is the scientific study of the oceans. It is an Earth science, which covers a wide range of topics, including ecosystem dynamics; ocean currents, waves, and geophysical fluid dynamic ...
, meteorology,
astrophysics Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline said, Astrophysics "seeks to ascertain the nature of the h ...
, and biology. It can be divided into fluid statics, the study of fluids at rest; and
fluid dynamics In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids— liquids and gases. It has several subdisciplines, including ''aerodynamics'' (the study of air and other gases in motion) an ...
, the study of the effect of forces on fluid motion. It is a branch of
continuum mechanics Continuum mechanics is a branch of mechanics that deals with the mechanical behavior of materials modeled as a continuous mass rather than as discrete particles. The French mathematician Augustin-Louis Cauchy was the first to formulate such m ...
, a subject which models matter without using the information that it is made out of atoms; that is, it models matter from a ''macroscopic'' viewpoint rather than from ''microscopic''. Fluid mechanics, especially fluid dynamics, is an active field of research, typically mathematically complex. Many problems are partly or wholly unsolved and are best addressed by numerical methods, typically using computers. A modern discipline, called computational fluid dynamics (CFD), is devoted to this approach. Particle image velocimetry, an experimental method for visualizing and analyzing fluid flow, also takes advantage of the highly visual nature of fluid flow.


Brief history

The study of fluid mechanics goes back at least to the days of ancient Greece, when
Archimedes Archimedes of Syracuse (;; ) was a Greek mathematician, physicist, engineer, astronomer, and inventor from the ancient city of Syracuse in Sicily. Although few details of his life are known, he is regarded as one of the leading scientists ...
investigated fluid statics and buoyancy and formulated his famous law known now as the Archimedes' principle, which was published in his work '' On Floating Bodies''—generally considered to be the first major work on fluid mechanics. Rapid advancement in fluid mechanics began with Leonardo da Vinci (observations and experiments), Evangelista Torricelli (invented the barometer), Isaac Newton (investigated viscosity) and
Blaise Pascal Blaise Pascal ( , , ; ; 19 June 1623 – 19 August 1662) was a French mathematician, physicist, inventor, philosopher, and Catholic Church, Catholic writer. He was a child prodigy who was educated by his father, a tax collector in Rouen. Pa ...
(researched hydrostatics, formulated Pascal's law), and was continued by
Daniel Bernoulli Daniel Bernoulli FRS (; – 27 March 1782) was a Swiss mathematician and physicist and was one of the many prominent mathematicians in the Bernoulli family from Basel. He is particularly remembered for his applications of mathematics to mechan ...
with the introduction of mathematical fluid dynamics in ''Hydrodynamica'' (1739). Inviscid flow was further analyzed by various mathematicians ( Jean le Rond d'Alembert, Joseph Louis Lagrange, Pierre-Simon Laplace, Siméon Denis Poisson) and viscous flow was explored by a multitude of engineers including Jean Léonard Marie Poiseuille and Gotthilf Hagen. Further mathematical justification was provided by Claude-Louis Navier and George Gabriel Stokes in the Navier–Stokes equations, and boundary layers were investigated ( Ludwig Prandtl, Theodore von Kármán), while various scientists such as Osborne Reynolds, Andrey Kolmogorov, and Geoffrey Ingram Taylor advanced the understanding of fluid viscosity and turbulence.


Main branches


Fluid statics

Fluid statics or hydrostatics is the branch of fluid mechanics that studies
fluid In physics, a fluid is a liquid, gas, or other material that continuously deforms (''flows'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are substances which cannot resist any shear ...
s at rest. It embraces the study of the conditions under which fluids are at rest in
stable A stable is a building in which livestock, especially horses, are kept. It most commonly means a building that is divided into separate stalls for individual animals and livestock. There are many different types of stables in use today; the ...
equilibrium; and is contrasted with
fluid dynamics In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids— liquids and gases. It has several subdisciplines, including ''aerodynamics'' (the study of air and other gases in motion) an ...
, the study of fluids in motion. Hydrostatics offers physical explanations for many phenomena of everyday life, such as why atmospheric pressure changes with altitude, why wood and oil float on water, and why the surface of water is always level whatever the shape of its container. Hydrostatics is fundamental to hydraulics, the engineering of equipment for storing, transporting and using fluids. It is also relevant to some aspects of geophysics and
astrophysics Astrophysics is a science that employs the methods and principles of physics and chemistry in the study of astronomical objects and phenomena. As one of the founders of the discipline said, Astrophysics "seeks to ascertain the nature of the h ...
(for example, in understanding plate tectonics and anomalies in the Earth's gravitational field), to meteorology, to medicine (in the context of
blood pressure Blood pressure (BP) is the pressure of circulating blood against the walls of blood vessels. Most of this pressure results from the heart pumping blood through the circulatory system. When used without qualification, the term "blood pressure" r ...
), and many other fields.


Fluid dynamics

''
Fluid dynamics In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids— liquids and gases. It has several subdisciplines, including ''aerodynamics'' (the study of air and other gases in motion) an ...
'' is a subdiscipline of fluid mechanics that deals with ''fluid flow''—the science of liquids and gases in motion. Fluid dynamics offers a systematic structure—which underlies these practical disciplines—that embraces empirical and semi-empirical laws derived from
flow measurement Flow measurement is the quantification of bulk fluid movement. Flow can be measured in a variety of ways. The common types of flowmeters with industrial applications are listed below: * a) Obstruction type (differential pressure or variable area) ...
and used to solve practical problems. The solution to a
fluid dynamics In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids— liquids and gases. It has several subdisciplines, including ''aerodynamics'' (the study of air and other gases in motion) an ...
problem typically involves calculating various properties of the fluid, such as velocity, pressure, density, and temperature, as functions of space and time. It has several subdisciplines itself, including '' aerodynamics'' (the study of air and other gases in motion) and ''hydrodynamics'' (the study of liquids in motion). Fluid dynamics has a wide range of applications, including calculating
force In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a p ...
s and
movement Movement may refer to: Common uses * Movement (clockwork), the internal mechanism of a timepiece * Motion, commonly referred to as movement Arts, entertainment, and media Literature * "Movement" (short story), a short story by Nancy Fu ...
s on aircraft, determining the mass flow rate of petroleum through pipelines, predicting evolving weather patterns, understanding
nebula A nebula ('cloud' or 'fog' in Latin; pl. nebulae, nebulæ or nebulas) is a distinct luminescent part of interstellar medium, which can consist of ionized, neutral or molecular hydrogen and also cosmic dust. Nebulae are often star-forming regio ...
e in interstellar space and modeling
explosions An explosion is a rapid expansion in volume associated with an extreme outward release of energy, usually with the generation of high temperatures and release of high-pressure gases. Supersonic explosions created by high explosives are known ...
. Some fluid-dynamical principles are used in traffic engineering and crowd dynamics.


Relationship to continuum mechanics

Fluid mechanics is a subdiscipline of
continuum mechanics Continuum mechanics is a branch of mechanics that deals with the mechanical behavior of materials modeled as a continuous mass rather than as discrete particles. The French mathematician Augustin-Louis Cauchy was the first to formulate such m ...
, as illustrated in the following table. In a mechanical view, a fluid is a substance that does not support shear stress; that is why a fluid at rest has the shape of its containing vessel. A fluid at rest has no shear stress.


Assumptions

The assumptions inherent to a fluid mechanical treatment of a physical system can be expressed in terms of mathematical equations. Fundamentally, every fluid mechanical system is assumed to obey: * Conservation of mass *
Conservation of energy In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be ''conserved'' over time. This law, first proposed and tested by Émilie du Châtelet, means th ...
* Conservation of momentum * The continuum assumption For example, the assumption that mass is conserved means that for any fixed control volume (for example, a spherical volume)—enclosed by a control surface—the rate of change of the mass contained in that volume is equal to the rate at which mass is passing through the surface from ''outside'' to ''inside'', minus the rate at which mass is passing from ''inside'' to ''outside''. This can be expressed as an equation in integral form over the control volume. The is an idealization of
continuum mechanics Continuum mechanics is a branch of mechanics that deals with the mechanical behavior of materials modeled as a continuous mass rather than as discrete particles. The French mathematician Augustin-Louis Cauchy was the first to formulate such m ...
under which fluids can be treated as continuous, even though, on a microscopic scale, they are composed of
molecules A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioche ...
. Under the continuum assumption, macroscopic (observed/measurable) properties such as density, pressure, temperature, and bulk velocity are taken to be well-defined at "infinitesimal" volume elements—small in comparison to the characteristic length scale of the system, but large in comparison to molecular length scale. Fluid properties can vary continuously from one volume element to another and are average values of the molecular properties. The continuum hypothesis can lead to inaccurate results in applications like supersonic speed flows, or molecular flows on nano scale. Those problems for which the continuum hypothesis fails can be solved using
statistical mechanics In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic be ...
. To determine whether or not the continuum hypothesis applies, the Knudsen number, defined as the ratio of the molecular mean free path to the characteristic length
scale Scale or scales may refer to: Mathematics * Scale (descriptive set theory), an object defined on a set of points * Scale (ratio), the ratio of a linear dimension of a model to the corresponding dimension of the original * Scale factor, a number ...
, is evaluated. Problems with Knudsen numbers below 0.1 can be evaluated using the continuum hypothesis, but molecular approach (statistical mechanics) can be applied to find the fluid motion for larger Knudsen numbers.


Navier–Stokes equations

The Navier–Stokes equations (named after Claude-Louis Navier and George Gabriel Stokes) are
differential equations In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, an ...
that describe the force balance at a given point within a fluid. For an incompressible fluid with vector velocity field \mathbf, the Navier–Stokes equations are : \frac + (\mathbf \cdot \nabla) \mathbf = - \frac\nabla P + \nu \nabla^2 \mathbf. These differential equations are the analogues for deformable materials to Newton's equations of motion for particles – the Navier–Stokes equations describe changes in
momentum In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass an ...
(
force In physics, a force is an influence that can change the motion of an object. A force can cause an object with mass to change its velocity (e.g. moving from a state of rest), i.e., to accelerate. Force can also be described intuitively as a p ...
) in response to pressure P and viscosity, parameterized by the kinematic viscosity \nu here. Occasionally, body forces, such as the gravitational force or Lorentz force are added to the equations. Solutions of the Navier–Stokes equations for a given physical problem must be sought with the help of calculus. In practical terms, only the simplest cases can be solved exactly in this way. These cases generally involve non-turbulent, steady flow in which the
Reynolds number In fluid mechanics, the Reynolds number () is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between inertial and viscous forces. At low Reynolds numbers, flows tend to be domi ...
is small. For more complex cases, especially those involving turbulence, such as global weather systems, aerodynamics, hydrodynamics and many more, solutions of the Navier–Stokes equations can currently only be found with the help of computers. This branch of science is called computational fluid dynamics.


Inviscid and viscous fluids

An inviscid fluid has no viscosity, \nu=0 . In practice, an inviscid flow is an idealization, one that facilitates mathematical treatment. In fact, purely inviscid flows are only known to be realized in the case of superfluidity. Otherwise, fluids are generally viscous, a property that is often most important within a boundary layer near a solid surface, where the flow must match onto the no-slip condition at the solid. In some cases, the mathematics of a fluid mechanical system can be treated by assuming that the fluid outside of boundary layers is inviscid, and then matching its solution onto that for a thin laminar boundary layer. For fluid flow over a porous boundary, the fluid velocity can be discontinuous between the free fluid and the fluid in the porous media (this is related to the Beavers and Joseph condition). Further, it is useful at low
subsonic Subsonic may refer to: Motion through a medium * Any speed lower than the speed of sound within a sound-propagating medium * Subsonic aircraft, a flying machine that flies at air speeds lower than the speed of sound * Subsonic ammunition, a type o ...
speeds to assume that gas is incompressible—that is, the density of the gas does not change even though the speed and static pressure change.


Newtonian versus non-Newtonian fluids

A Newtonian fluid (named after Isaac Newton) is defined to be a
fluid In physics, a fluid is a liquid, gas, or other material that continuously deforms (''flows'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are substances which cannot resist any shear ...
whose shear stress is linearly proportional to the velocity gradient in the direction perpendicular to the plane of shear. This definition means regardless of the forces acting on a fluid, it ''continues to flow''. For example, water is a Newtonian fluid, because it continues to display fluid properties no matter how much it is stirred or mixed. A slightly less rigorous definition is that the
drag Drag or The Drag may refer to: Places * Drag, Norway, a village in Tysfjord municipality, Nordland, Norway * ''Drág'', the Hungarian name for Dragu Commune in Sălaj County, Romania * Drag (Austin, Texas), the portion of Guadalupe Street adj ...
of a small object being moved slowly through the fluid is proportional to the force applied to the object. (Compare friction). Important fluids, like water as well as most gasses, behave—to good approximation—as a Newtonian fluid under normal conditions on Earth. By contrast, stirring a non-Newtonian fluid can leave a "hole" behind. This will gradually fill up over time—this behavior is seen in materials such as pudding, oobleck, or sand (although sand isn't strictly a fluid). Alternatively, stirring a non-Newtonian fluid can cause the viscosity to decrease, so the fluid appears "thinner" (this is seen in non-drip
paint Paint is any pigmented liquid, liquefiable, or solid mastic composition that, after application to a substrate in a thin layer, converts to a solid film. It is most commonly used to protect, color, or provide texture. Paint can be made in many ...
s). There are many types of non-Newtonian fluids, as they are defined to be something that fails to obey a particular property—for example, most fluids with long molecular chains can react in a non-Newtonian manner.


Equations for a Newtonian fluid

The constant of proportionality between the viscous stress tensor and the velocity gradient is known as the viscosity. A simple equation to describe incompressible Newtonian fluid behavior is :\tau = -\mu\frac where :\tau is the shear stress exerted by the fluid ("
drag Drag or The Drag may refer to: Places * Drag, Norway, a village in Tysfjord municipality, Nordland, Norway * ''Drág'', the Hungarian name for Dragu Commune in Sălaj County, Romania * Drag (Austin, Texas), the portion of Guadalupe Street adj ...
") :\mu is the fluid viscosity—a constant of proportionality :\frac is the velocity gradient perpendicular to the direction of shear. For a Newtonian fluid, the viscosity, by definition, depends only on temperature, not on the forces acting upon it. If the fluid is incompressible the equation governing the viscous stress (in
Cartesian coordinates A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in t ...
) is :\tau_ = \mu\left(\frac+\frac \right) = \mu\partial_v_ where :\tau_ is the shear stress on the i^ face of a fluid element in the j^ direction :v_i is the velocity in the i^ direction :x_j is the j^ direction coordinate. If the fluid is not incompressible the general form for the viscous stress in a Newtonian fluid is :\tau_ = \mu \left( \frac + \frac - \frac \delta_ \nabla \cdot \mathbf \right) + \kappa \delta_ \nabla \cdot \mathbf where \kappa is the second viscosity coefficient (or bulk viscosity). If a fluid does not obey this relation, it is termed a non-Newtonian fluid, of which there are several types. Non-Newtonian fluids can be either plastic, Bingham plastic, pseudoplastic, dilatant, thixotropic, rheopectic, viscoelastic. In some applications, another rough broad division among fluids is made: ideal and non-ideal fluids. An ideal fluid is non-viscous and offers no resistance whatsoever to a shearing force. An ideal fluid really does not exist, but in some calculations, the assumption is justifiable. One example of this is the flow far from solid surfaces. In many cases, the viscous effects are concentrated near the solid boundaries (such as in boundary layers) while in regions of the flow field far away from the boundaries the viscous effects can be neglected and the fluid there is treated as it were inviscid (ideal flow). When the viscosity is neglected, the term containing the viscous stress tensor \mathbf in the Navier–Stokes equation vanishes. The equation reduced in this form is called the
Euler equation 200px, Leonhard Euler (1707–1783) In mathematics and physics, many topics are named in honor of Swiss mathematician Leonhard Euler (1707–1783), who made many important discoveries and innovations. Many of these items named after Euler includ ...
.


See also

* Transport phenomena * Aerodynamics * Applied mechanics * Bernoulli's principle * Communicating vessels * Computational fluid dynamics * Compressor map * Secondary flow *
Different types of boundary conditions in fluid dynamics Boundary conditions in fluid dynamics are the set of constraints to boundary value problems in computational fluid dynamics. These boundary conditions include inlet boundary conditions, outlet boundary conditions, wall boundary conditions, constan ...


References


Further reading

* * * * *


External links


Free Fluid Mechanics booksAnnual Review of Fluid Mechanics

CFDWiki
– the Computational Fluid Dynamics reference wiki.
Educational Particle Image Velocimetry – resources and demonstrations
{{DEFAULTSORT:Fluid Mechanics Civil engineering