Tate Module Of A Number Field
   HOME
*





Tate Module Of A Number Field
In mathematics, a Tate module of an abelian group, named for John Tate, is a module constructed from an abelian group ''A''. Often, this construction is made in the following situation: ''G'' is a commutative group scheme over a field ''K'', ''Ks'' is the separable closure of ''K'', and ''A'' = ''G''(''Ks'') (the ''Ks''-valued points of ''G''). In this case, the Tate module of ''A'' is equipped with an action of the absolute Galois group of ''K'', and it is referred to as the Tate module of ''G''. Definition Given an abelian group ''A'' and a prime number ''p'', the ''p''-adic Tate module of ''A'' is :T_p(A)=\underset A ^n/math> where ''A'' 'pn''is the ''pn'' torsion of ''A'' (i.e. the kernel of the multiplication-by-''pn'' map), and the inverse limit is over positive integers ''n'' with transition morphisms given by the multiplication-by-''p'' map ''A'' 'p''''n''+1→ ''A'' 'pn'' Thus, the Tate module encodes all the ''p''-power torsion of ''A''. It is equipped ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Roots Of Unity
In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power . Roots of unity are used in many branches of mathematics, and are especially important in number theory, the theory of group characters, and the discrete Fourier transform. Roots of unity can be defined in any field. If the characteristic of the field is zero, the roots are complex numbers that are also algebraic integers. For fields with a positive characteristic, the roots belong to a finite field, and, conversely, every nonzero element of a finite field is a root of unity. Any algebraically closed field contains exactly th roots of unity, except when is a multiple of the (positive) characteristic of the field. General definition An ''th root of unity'', where is a positive integer, is a number satisfying the equation :z^n = 1. Unless otherwise specified, the roots of unity may be taken to be complex numbers (inc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite Field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod when is a prime number. The ''order'' of a finite field is its number of elements, which is either a prime number or a prime power. For every prime number and every positive integer there are fields of order p^k, all of which are isomorphic. Finite fields are fundamental in a number of areas of mathematics and computer science, including number theory, algebraic geometry, Galois theory, finite geometry, cryptography and coding theory. Properties A finite field is a finite set which is a field; this means that multiplication, addition, subtraction and division (excluding division by zero ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prime Field
In mathematics, the characteristic of a ring , often denoted , is defined to be the smallest number of times one must use the ring's multiplicative identity (1) in a sum to get the additive identity (0). If this sum never reaches the additive identity the ring is said to have characteristic zero. That is, is the smallest positive number such that: :\underbrace_ = 0 if such a number exists, and otherwise. Motivation The special definition of the characteristic zero is motivated by the equivalent definitions characterized in the next section, where the characteristic zero is not required to be considered separately. The characteristic may also be taken to be the exponent of the ring's additive group, that is, the smallest positive integer such that: :\underbrace_ = 0 for every element of the ring (again, if exists; otherwise zero). Some authors do not include the multiplicative identity element in their requirements for a ring (see Multiplicative identity and the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finitely Generated Algebra
In mathematics, a finitely generated algebra (also called an algebra of finite type) is a commutative associative algebra ''A'' over a field ''K'' where there exists a finite set of elements ''a''1,...,''a''''n'' of ''A'' such that every element of ''A'' can be expressed as a polynomial in ''a''1,...,''a''''n'', with coefficients in ''K''. Equivalently, there exist elements a_1,\dots,a_n\in A s.t. the evaluation homomorphism at =(a_1,\dots,a_n) :\phi_\colon K _1,\dots,X_ntwoheadrightarrow A is surjective; thus, by applying the first isomorphism theorem, A \simeq K _1,\dots,X_n(\phi_). Conversely, A:= K _1,\dots,X_nI for any ideal I\subset K _1,\dots,X_n/math> is a K-algebra of finite type, indeed any element of A is a polynomial in the cosets a_i:=X_i+I, i=1,\dots,n with coefficients in K. Therefore, we obtain the following characterisation of finitely generated K-algebras :A is a finitely generated K-algebra if and only if it is isomorphic to a quotient ring of the type K _1,\d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Tate Conjecture
In number theory and algebraic geometry, the Tate conjecture is a 1963 conjecture of John Tate that would describe the algebraic cycles on a variety in terms of a more computable invariant, the Galois representation on étale cohomology. The conjecture is a central problem in the theory of algebraic cycles. It can be considered an arithmetic analog of the Hodge conjecture. Statement of the conjecture Let ''V'' be a smooth projective variety over a field ''k'' which is finitely generated over its prime field. Let ''k''s be a separable closure of ''k'', and let ''G'' be the absolute Galois group Gal(''k''s/''k'') of ''k''. Fix a prime number ℓ which is invertible in ''k''. Consider the ℓ-adic cohomology groups (coefficients in the ℓ-adic integers Zℓ, scalars then extended to the ℓ-adic numbers Qℓ) of the base extension of ''V'' to ''k''s; these groups are representations of ''G''. For any ''i'' ≥ 0, a codimension-''i'' subvariety of ''V'' (understood to be de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


étale Cohomology
In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type. History Étale cohomology was introduced by , using some suggestions by Jean-Pierre Serre, and was motivated by the attempt to construct a Weil cohomology theory in order to prove the Weil conjectures. The foundations were soon after worked out by Grothendieck together with Michael Artin, and published as and SGA 4. Grothendieck used étale cohomology to prove some of the Weil conjectures (Bernard Dwork had already managed to prove the rationality part of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Duality (mathematics)
In mathematics, a duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one fashion, often (but not always) by means of an involution operation: if the dual of is , then the dual of is . Such involutions sometimes have fixed points, so that the dual of is itself. For example, Desargues' theorem is self-dual in this sense under the ''standard duality in projective geometry''. In mathematical contexts, ''duality'' has numerous meanings. It has been described as "a very pervasive and important concept in (modern) mathematics" and "an important general theme that has manifestations in almost every area of mathematics". Many mathematical dualities between objects of two types correspond to pairings, bilinear functions from an object of one type and another object of the second type to some family of scalars. For instance, ''linear algebra duality'' corresponds in this way to bilinear maps from pairs of ve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hasse–Witt Matrix
In mathematics, the Hasse–Witt matrix ''H'' of a non-singular algebraic curve ''C'' over a finite field ''F'' is the matrix of the Frobenius mapping (''p''-th power mapping where ''F'' has ''q'' elements, ''q'' a power of the prime number ''p'') with respect to a basis for the differentials of the first kind. It is a ''g'' × ''g'' matrix where ''C'' has genus ''g''. The rank of the Hasse–Witt matrix is the Hasse or Hasse–Witt invariant. Approach to the definition This definition, as given in the introduction, is natural in classical terms, and is due to Helmut Hasse and Ernst Witt (1936). It provides a solution to the question of the ''p''-rank of the Jacobian variety ''J'' of ''C''; the ''p''-rank is bounded by the rank of ''H'', specifically it is the rank of the Frobenius mapping composed with itself ''g'' times. It is also a definition that is in principle algorithmic. There has been substantial recent interest in this as of practical application to cryptography, i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Characteristic Zero
In mathematics, the characteristic of a ring , often denoted , is defined to be the smallest number of times one must use the ring's multiplicative identity (1) in a sum to get the additive identity (0). If this sum never reaches the additive identity the ring is said to have characteristic zero. That is, is the smallest positive number such that: :\underbrace_ = 0 if such a number exists, and otherwise. Motivation The special definition of the characteristic zero is motivated by the equivalent definitions characterized in the next section, where the characteristic zero is not required to be considered separately. The characteristic may also be taken to be the exponent of the ring's additive group, that is, the smallest positive integer such that: :\underbrace_ = 0 for every element of the ring (again, if exists; otherwise zero). Some authors do not include the multiplicative identity element in their requirements for a ring (see Multiplicative identity and the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Abelian Variety
In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular functions. Abelian varieties are at the same time among the most studied objects in algebraic geometry and indispensable tools for much research on other topics in algebraic geometry and number theory. An abelian variety can be defined by equations having coefficients in any field; the variety is then said to be defined ''over'' that field. Historically the first abelian varieties to be studied were those defined over the field of complex numbers. Such abelian varieties turn out to be exactly those complex tori that can be embedded into a complex projective space. Abelian varieties defined over algebraic number fields are a special case, which is important also from the viewpoint of number theory. Localization techniques lead naturally fr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Torus
In mathematics, an algebraic torus, where a one dimensional torus is typically denoted by \mathbf G_, \mathbb_m, or \mathbb, is a type of commutative affine algebraic group commonly found in projective algebraic geometry and toric geometry. Higher dimensional algebraic tori can be modelled as a product of algebraic groups \mathbf G_. These groups were named by analogy with the theory of ''tori'' in Lie group theory (see Cartan subgroup). For example, over the complex numbers \mathbb the algebraic torus \mathbf G_ is isomorphic to the group scheme \mathbb^* = \text(\mathbb ,t^, which is the scheme theoretic analogue of the Lie group U(1) \subset \mathbb. In fact, any \mathbf G_-action on a complex vector space can be pulled back to a U(1)-action from the inclusion U(1) \subset \mathbb^* as real manifolds. Tori are of fundamental importance in the theory of algebraic groups and Lie groups and in the study of the geometric objects associated to them such as symmetric spaces and buil ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]