HOME
*





Tate Conjecture
In number theory and algebraic geometry, the Tate conjecture is a 1963 conjecture of John Tate that would describe the algebraic cycles on a variety in terms of a more computable invariant, the Galois representation on étale cohomology. The conjecture is a central problem in the theory of algebraic cycles. It can be considered an arithmetic analog of the Hodge conjecture. Statement of the conjecture Let ''V'' be a smooth projective variety over a field ''k'' which is finitely generated over its prime field. Let ''k''s be a separable closure of ''k'', and let ''G'' be the absolute Galois group Gal(''k''s/''k'') of ''k''. Fix a prime number ℓ which is invertible in ''k''. Consider the ℓ-adic cohomology groups (coefficients in the ℓ-adic integers Zℓ, scalars then extended to the ℓ-adic numbers Qℓ) of the base extension of ''V'' to ''k''s; these groups are representations of ''G''. For any ''i'' ≥ 0, a codimension-''i'' subvariety of ''V'' (understood to be defined ov ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Absolute Galois Group
In mathematics, the absolute Galois group ''GK'' of a field ''K'' is the Galois group of ''K''sep over ''K'', where ''K''sep is a separable closure of ''K''. Alternatively it is the group of all automorphisms of the algebraic closure of ''K'' that fix ''K''. The absolute Galois group is well-defined up to inner automorphism. It is a profinite group. (When ''K'' is a perfect field, ''K''sep is the same as an algebraic closure ''K''alg of ''K''. This holds e.g. for ''K'' of characteristic zero, or ''K'' a finite field.) Examples * The absolute Galois group of an algebraically closed field is trivial. * The absolute Galois group of the real numbers is a cyclic group of two elements (complex conjugation and the identity map), since C is the separable closure of R and ''C:Rnbsp;= 2. * The absolute Galois group of a finite field ''K'' is isomorphic to the group :: \hat = \varprojlim \mathbf/n\mathbf. (For the notation, see Inverse limit.) :The Frobenius automorphism Fr is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lefschetz Theorem On (1,1)-classes
In algebraic geometry, a branch of mathematics, the Lefschetz theorem on (1,1)-classes, named after Solomon Lefschetz, is a classical statement relating holomorphic line bundles on a compact Kähler manifold to classes in its integral cohomology. It is the only case of the Hodge conjecture which has been proved for all Kähler manifolds. Statement of the theorem Let ''X'' be a compact Kähler manifold. The first Chern class ''c''1 gives a map from holomorphic line bundles to . By Hodge theory, the de Rham cohomology group ''H''2(''X'', C) decomposes as a direct sum , and it can be proven that the image of ''c''1 lies in ''H''1,1(''X''). The theorem says that the map to is surjective. In the special case where ''X'' is a projective variety, holomorphic line bundles are in bijection with linear equivalences class of divisors, and given a divisor ''D'' on ''X'' with associated line bundle ''O(D)'', the class ''c''1(''O(D)'') is Poincaré dual to the homology class given by ''D''. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jacobian Variety
In mathematics, the Jacobian variety ''J''(''C'') of a non-singular algebraic curve ''C'' of genus ''g'' is the moduli space of degree 0 line bundles. It is the connected component of the identity in the Picard group of ''C'', hence an abelian variety. Introduction The Jacobian variety is named after Carl Gustav Jacobi, who proved the complete version of the Abel–Jacobi theorem, making the injectivity statement of Niels Abel into an isomorphism. It is a principally polarized abelian variety, of dimension ''g'', and hence, over the complex numbers, it is a complex torus. If ''p'' is a point of ''C'', then the curve ''C'' can be mapped to a subvariety of ''J'' with the given point ''p'' mapping to the identity of ''J'', and ''C'' generates ''J'' as a group. Construction for complex curves Over the complex numbers, the Jacobian variety can be realized as the quotient space ''V''/''L'', where ''V'' is the dual of the vector space of all global holomorphic differentials on ''C'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Birch And Swinnerton-Dyer Conjecture
In mathematics, the Birch and Swinnerton-Dyer conjecture (often called the Birch–Swinnerton-Dyer conjecture) describes the set of rational solutions to equations defining an elliptic curve. It is an open problem in the field of number theory and is widely recognized as one of the most challenging mathematical problems. It is named after mathematicians Bryan John Birch and Peter Swinnerton-Dyer, who developed the conjecture during the first half of the 1960s with the help of machine computation. , only special cases of the conjecture have been proven. The modern formulation of the conjecture relates arithmetic data associated with an elliptic curve ''E'' over a number field ''K'' to the behaviour of the Hasse–Weil ''L''-function ''L''(''E'', ''s'') of ''E'' at ''s'' = 1. More specifically, it is conjectured that the rank of the abelian group ''E''(''K'') of points of ''E'' is the order of the zero of ''L''(''E'', ''s'') at ''s'' = 1, and the first non-zero ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Function Field Of An Algebraic Variety
In algebraic geometry, the function field of an algebraic variety ''V'' consists of objects which are interpreted as rational functions on ''V''. In classical algebraic geometry they are ratios of polynomials; in complex algebraic geometry these are meromorphic functions and their higher-dimensional analogues; in modern algebraic geometry they are elements of some quotient ring's field of fractions. Definition for complex manifolds In complex algebraic geometry the objects of study are complex analytic varieties, on which we have a local notion of complex analysis, through which we may define meromorphic functions. The function field of a variety is then the set of all meromorphic functions on the variety. (Like all meromorphic functions, these take their values in \mathbb\cup\infty.) Together with the operations of addition and multiplication of functions, this is a field in the sense of algebra. For the Riemann sphere, which is the variety \mathbb^1 over the complex numbers, th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Divisor (algebraic Geometry)
In algebraic geometry, divisors are a generalization of codimension-1 subvarieties of algebraic varieties. Two different generalizations are in common use, Cartier divisors and Weil divisors (named for Pierre Cartier and André Weil by David Mumford). Both are derived from the notion of divisibility in the integers and algebraic number fields. Globally, every codimension-1 subvariety of projective space is defined by the vanishing of one homogeneous polynomial; by contrast, a codimension-''r'' subvariety need not be definable by only ''r'' equations when ''r'' is greater than 1. (That is, not every subvariety of projective space is a complete intersection.) Locally, every codimension-1 subvariety of a smooth variety can be defined by one equation in a neighborhood of each point. Again, the analogous statement fails for higher-codimension subvarieties. As a result of this property, much of algebraic geometry studies an arbitrary variety by analysing its codimension-1 subvarieties ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cyclotomic Character
In number theory, a cyclotomic character is a character of a Galois group giving the Galois action on a group of roots of unity. As a one-dimensional representation over a ring , its representation space is generally denoted by (that is, it is a representation ). ''p''-adic cyclotomic character Fix a prime, and let denote the absolute Galois group of the rational numbers. The roots of unity \mu_ = \left\ form a cyclic group of order p^n, generated by any choice of a primitive th root of unity . Since all of the primitive roots in \mu_ are Galois conjugate, the Galois group G_\mathbf acts on \mu_ by automorphisms. After fixing a primitive root of unity \zeta_ generating \mu_, any element of \mu_ can be written as a power of \zeta_, where the exponent is a unique element in (\mathbf/p^n\mathbf)^\times. One can thus write \sigma.\zeta := \sigma(\zeta) = \zeta_^ where a(\sigma,n) \in (\mathbf/p^n \mathbf)^\times is the unique element as above, depending on both \sigma and p. T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tate Twist
In number theory and algebraic geometry, the Tate twist, 'The Tate Twist', https://ncatlab.org/nlab/show/Tate+twist named after John Tate, is an operation on Galois modules. For example, if ''K'' is a field, ''GK'' is its absolute Galois group, and ρ : ''GK'' → AutQ''p''(''V'') is a representation of ''GK'' on a finite-dimensional vector space ''V'' over the field Q''p'' of ''p''-adic numbers, then the Tate twist of ''V'', denoted ''V''(1), is the representation on the tensor product ''V''⊗Q''p''(1), where Q''p''(1) is the ''p''-adic cyclotomic character (i.e. the Tate module of the group of roots of unity in the separable closure ''Ks'' of ''K''). More generally, if ''m'' is a positive integer, the ''m''th Tate twist of ''V'', denoted ''V''(''m''), is the tensor product of ''V'' with the ''m''-fold tensor product of Q''p''(1). Denoting by Q''p''(−1) the dual representation In mathematics, if is a group and is a linear representation of it on the vector space ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Codimension
In mathematics, codimension is a basic geometric idea that applies to subspaces in vector spaces, to submanifolds in manifolds, and suitable subsets of algebraic varieties. For affine and projective algebraic varieties, the codimension equals the height of the defining ideal. For this reason, the height of an ideal is often called its codimension. The dual concept is relative dimension. Definition Codimension is a ''relative'' concept: it is only defined for one object ''inside'' another. There is no “codimension of a vector space (in isolation)”, only the codimension of a vector ''sub''space. If ''W'' is a linear subspace of a finite-dimensional vector space ''V'', then the codimension of ''W'' in ''V'' is the difference between the dimensions: :\operatorname(W) = \dim(V) - \dim(W). It is the complement of the dimension of ''W,'' in that, with the dimension of ''W,'' it adds up to the dimension of the ambient space ''V:'' :\dim(W) + \operatorname(W) = \dim(V). Similarly, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Representation
In the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations of a vector space to itself (i.e. vector space automorphisms); in particular, they can be used to represent group elements as invertible matrices so that the group operation can be represented by matrix multiplication. In chemistry, a group representation can relate mathematical group elements to symmetric rotations and reflections of molecules. Representations of groups are important because they allow many group-theoretic problems to be reduced to problems in linear algebra, which is well understood. They are also important in physics because, for example, they describe how the symmetry group of a physical system affects the solutions of equations describing that system. The term ''representation of a group'' is also used in a more general sense to mean any "description" of a group as a group of transformations of some mathematical o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


L-adic Number
In mathematics, the -adic number system for any prime number  extends the ordinary arithmetic of the rational numbers in a different way from the extension of the rational number system to the real and complex number systems. The extension is achieved by an alternative interpretation of the concept of "closeness" or absolute value. In particular, two -adic numbers are considered to be close when their difference is divisible by a high power of : the higher the power, the closer they are. This property enables -adic numbers to encode congruence information in a way that turns out to have powerful applications in number theory – including, for example, in the famous proof of Fermat's Last Theorem by Andrew Wiles. These numbers were first described by Kurt Hensel in 1897, though, with hindsight, some of Ernst Kummer's earlier work can be interpreted as implicitly using -adic numbers.Translator's introductionpage 35 "Indeed, with hindsight it becomes apparent that a discret ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]