HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, codimension is a basic geometric idea that applies to subspaces in
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
s, to submanifolds in
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a N ...
s, and suitable
subset In mathematics, a Set (mathematics), set ''A'' is a subset of a set ''B'' if all Element (mathematics), elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they a ...
s of algebraic varieties. For
affine Affine may describe any of various topics concerned with connections or affinities. It may refer to: * Affine, a Affinity_(law)#Terminology, relative by marriage in law and anthropology * Affine cipher, a special case of the more general substi ...
and projective algebraic varieties, the codimension equals the
height Height is measure of vertical distance, either vertical extent (how "tall" something or someone is) or vertical position (how "high" a point is). For an example of vertical extent, "This basketball player is 7 foot 1 inches in height." For an e ...
of the defining ideal. For this reason, the height of an ideal is often called its codimension. The dual concept is relative dimension.


Definition

Codimension is a ''relative'' concept: it is only defined for one object ''inside'' another. There is no “codimension of a vector space (in isolation)”, only the codimension of a vector ''sub''space. If ''W'' is a
linear subspace In mathematics, the term ''linear'' is used in two distinct senses for two different properties: * linearity of a ''function (mathematics), function'' (or ''mapping (mathematics), mapping''); * linearity of a ''polynomial''. An example of a li ...
of a finite-dimensional
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
''V'', then the codimension of ''W'' in ''V'' is the difference between the dimensions: :\operatorname(W) = \dim(V) - \dim(W). It is the complement of the dimension of ''W,'' in that, with the dimension of ''W,'' it adds up to the dimension of the ambient space ''V:'' :\dim(W) + \operatorname(W) = \dim(V). Similarly, if ''N'' is a submanifold or subvariety in ''M'', then the codimension of ''N'' in ''M'' is :\operatorname(N) = \dim(M) - \dim(N). Just as the dimension of a submanifold is the dimension of the
tangent bundle A tangent bundle is the collection of all of the tangent spaces for all points on a manifold, structured in a way that it forms a new manifold itself. Formally, in differential geometry, the tangent bundle of a differentiable manifold M is ...
(the number of dimensions that you can move ''on'' the submanifold), the codimension is the dimension of the normal bundle (the number of dimensions you can move ''off'' the submanifold). More generally, if ''W'' is a
linear subspace In mathematics, the term ''linear'' is used in two distinct senses for two different properties: * linearity of a ''function (mathematics), function'' (or ''mapping (mathematics), mapping''); * linearity of a ''polynomial''. An example of a li ...
of a (possibly infinite dimensional)
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
''V'' then the codimension of ''W'' in ''V'' is the dimension (possibly infinite) of the quotient space ''V''/''W'', which is more abstractly known as the cokernel of the inclusion. For finite-dimensional vector spaces, this agrees with the previous definition :\operatorname(W) = \dim(V/W) = \dim \operatorname ( W \to V ) = \dim(V) - \dim(W), and is dual to the relative dimension as the dimension of the kernel. Finite-codimensional subspaces of infinite-dimensional spaces are often useful in the study of
topological vector space In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is als ...
s.


Additivity of codimension and dimension counting

The fundamental property of codimension lies in its relation to intersection: if ''W''1 has codimension ''k''1, and ''W''2 has codimension ''k''2, then if ''U'' is their intersection with codimension ''j'' we have :max (''k''1, ''k''2) ≤ ''j'' ≤ ''k''1 + ''k''2. In fact ''j'' may take any
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
value in this range. This statement is more perspicuous than the translation in terms of dimensions, because the RHS is just the sum of the codimensions. In words :''codimensions (at most) add''. :If the subspaces or submanifolds intersect transversally (which occurs generically), codimensions add exactly. This statement is called dimension counting, particularly in intersection theory.


Dual interpretation

In terms of the dual space, it is quite evident why dimensions add. The subspaces can be defined by the vanishing of a certain number of linear functionals, which if we take to be linearly independent, their number is the codimension. Therefore, we see that ''U'' is defined by taking the union of the sets of linear functionals defining the ''W''i. That union may introduce some degree of
linear dependence In the theory of vector spaces, a set of vectors is said to be if there exists no nontrivial linear combination of the vectors that equals the zero vector. If such a linear combination exists, then the vectors are said to be . These concep ...
: the possible values of ''j'' express that dependence, with the RHS sum being the case where there is no dependence. This definition of codimension in terms of the number of functions needed to cut out a subspace extends to situations in which both the ambient space and subspace are infinite dimensional. In other language, which is basic for any kind of intersection theory, we are taking the union of a certain number of constraints. We have two phenomena to look out for: # the two sets of constraints may not be independent; # the two sets of constraints may not be compatible. The first of these is often expressed as the principle of counting constraints: if we have a number ''N'' of
parameter A parameter (), generally, is any characteristic that can help in defining or classifying a particular system (meaning an event, project, object, situation, etc.). That is, a parameter is an element of a system that is useful, or critical, when ...
s to adjust (i.e. we have ''N'' degrees of freedom), and a constraint means we have to 'consume' a parameter to satisfy it, then the codimension of the solution set is ''at most'' the number of constraints. We do not expect to be able to find a solution if the predicted codimension, i.e. the number of ''independent'' constraints, exceeds ''N'' (in the linear algebra case, there is always a ''trivial'', null vector solution, which is therefore discounted). The second is a matter of geometry, on the model of parallel lines; it is something that can be discussed for linear problems by methods of linear algebra, and for non-linear problems in projective space, over the
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
field.


In geometric topology

Codimension also has some clear meaning in
geometric topology In mathematics, geometric topology is the study of manifolds and Map (mathematics)#Maps as functions, maps between them, particularly embeddings of one manifold into another. History Geometric topology as an area distinct from algebraic topo ...
: on a manifold, codimension 1 is the dimension of topological disconnection by a submanifold, while codimension 2 is the dimension of ramification and
knot theory In topology, knot theory is the study of knot (mathematics), mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be und ...
. In fact, the theory of high-dimensional manifolds, which starts in dimension 5 and above, can alternatively be said to start in codimension 3, because higher codimensions avoid the phenomenon of knots. Since
surgery theory In mathematics, specifically in geometric topology, surgery theory is a collection of techniques used to produce one finite-dimensional manifold from another in a 'controlled' way, introduced by . Milnor called this technique ''surgery'', while An ...
requires working up to the middle dimension, once one is in dimension 5, the middle dimension has codimension greater than 2, and hence one avoids knots. This quip is not vacuous: the study of
embedding In mathematics, an embedding (or imbedding) is one instance of some mathematical structure contained within another instance, such as a group (mathematics), group that is a subgroup. When some object X is said to be embedded in another object Y ...
s in codimension 2 is knot theory, and difficult, while the study of embeddings in codimension 3 or more is amenable to the tools of high-dimensional geometric topology, and hence considerably easier.


See also

* Glossary of differential geometry and topology


References

* *{{citation , last=Roman , first=Stephen , title=Advanced Linear Algebra , edition=Third , series=
Graduate Texts in Mathematics Graduate Texts in Mathematics (GTM) () is a series of graduate-level textbooks in mathematics published by Springer-Verlag. The books in this series, like the other Springer-Verlag mathematics series, are yellow books of a standard size (with va ...
, publisher = Springer , date=2008, pages= , isbn=978-0-387-72828-5 , author-link=Steven Roman Algebraic geometry Geometric topology Linear algebra Dimension Dimension theory