Superabundant Number
   HOME
*





Superabundant Number
In mathematics, a superabundant number (sometimes abbreviated as SA) is a certain kind of natural number. A natural number ''n'' is called superabundant precisely when, for all ''m'' < ''n'' :\frac 6/5. Superabundant numbers were defined by . Unknown to Alaoglu and Erdős, about 30 pages of Ramanujan's 1915 paper "Highly Composite Numbers" were suppressed. Those pages were finally published in The Ramanujan Journal 1 (1997), 119–153. In section 59 of that paper, Ramanujan defines generalized highly composite numbers, which include the superabundant numbers. Properties proved that if ''n'' is superabundant, then there exist a ''k'' and ''a''1, ''a''2, ..., ''a''''k'' such that :n=\prod_^k (p_i)^ where ''p''i is the ''i''-th prime number, and :a_1\geq a_2\geq\dotsb\geq a_k\geq 1. That is, they proved that if ''n'' is superabundant, the prime decomposition of ''n'' has non-increasing exponents (the exponent of a larger prime is never more than that a smaller prime) and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


120 (number)
120, read as one hundred ndtwenty, is the natural number following 119 and preceding 121. In the Germanic languages, the number 120 was also formerly known as "one hundred". This "hundred" of six score is now obsolete, but is described as the long hundred or great hundred in historical contexts. In mathematics 120 is * the factorial of 5 i.e. 5 × 4 × 3 × 2 × 1 * the fifteenth triangular number, as well as the sum of the first eight triangular numbers, making it also a tetrahedral number. 120 is the smallest number to appear six times in Pascal's triangle (as all triangular and tetragonal numbers appear in it). Because 15 is also triangular, 120 is a doubly triangular number. 120 is divisible by the first 5 triangular numbers and the first 4 tetrahedral numbers. It is the eighth hexagonal number. * highly composite, superior highly composite, superabundant, and colossally abundant number, with its 16 divisors being more than any number lower than it has, and it is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transactions Of The American Mathematical Society
The ''Transactions of the American Mathematical Society'' is a monthly peer-reviewed scientific journal of mathematics published by the American Mathematical Society. It was established in 1900. As a requirement, all articles must be more than 15 printed pages. See also * ''Bulletin of the American Mathematical Society'' * '' Journal of the American Mathematical Society'' * ''Memoirs of the American Mathematical Society'' * ''Notices of the American Mathematical Society'' * ''Proceedings of the American Mathematical Society'' External links * ''Transactions of the American Mathematical Society''on JSTOR JSTOR (; short for ''Journal Storage'') is a digital library founded in 1995 in New York City. Originally containing digitized back issues of academic journals, it now encompasses books and other primary sources as well as current issues of j ... American Mathematical Society academic journals Mathematics journals Publications established in 1900 {{math-journal-st ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Colossally Abundant Number
In mathematics, a colossally abundant number (sometimes abbreviated as CA) is a natural number that, in a particular, rigorous sense, has many divisors. Formally, a number ''n'' is said to be colossally abundant if there is an ε > 0 such that for all ''k'' > 1, :\frac\geq\frac where ''σ'' denotes the sum-of-divisors function. All colossally abundant numbers are also superabundant numbers, but the converse is not true. The first 15 colossally abundant numbers, 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320, 21621600, 367567200, 6983776800 are also the first 15 superior highly composite numbers, but neither set is a subset of the other. History Colossally abundant numbers were first studied by Ramanujan and his findings were intended to be included in his 1915 paper on highly composite numbers. Unfortunately, the publisher of the journal to which Ramanujan submitted his work, the London Mathematical Society, was in financ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Robin's Theorem
In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as ''the'' divisor function, it counts the ''number of divisors of an integer'' (including 1 and the number itself). It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important Modular arithmetic, congruences and identity (mathematics), identities; these are treated separately in the article Ramanujan's sum. A related function is the divisor summatory function, which, as the name implies, is a sum over the divisor function. Definition The sum of positive divisors function σ''z''(''n''), for a real or complex number ''z'', is defined as the summation, sum of the ''z''th Exponentiation, powers of the positive divisors of ''n''. It can be expressed in Summation#Capital ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann Hypothesis
In mathematics, the Riemann hypothesis is the conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part . Many consider it to be the most important unsolved problem in pure mathematics. It is of great interest in number theory because it implies results about the distribution of prime numbers. It was proposed by , after whom it is named. The Riemann hypothesis and some of its generalizations, along with Goldbach's conjecture and the twin prime conjecture, make up Hilbert's eighth problem in David Hilbert's list of twenty-three unsolved problems; it is also one of the Clay Mathematics Institute's Millennium Prize Problems, which offers a million dollars to anyone who solves any of them. The name is also used for some closely related analogues, such as the Riemann hypothesis for curves over finite fields. The Riemann zeta function ζ(''s'') is a function whose argument ''s'' may be any complex number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Harshad Number
In mathematics, a harshad number (or Niven number) in a given number base is an integer that is divisible by the sum of its digits when written in that base. Harshad numbers in base are also known as -harshad (or -Niven) numbers. Harshad numbers were defined by D. R. Kaprekar, a mathematician from India. The word "harshad" comes from the Sanskrit ' (joy) + ' (give), meaning joy-giver. The term "Niven number" arose from a paper delivered by Ivan M. Niven at a conference on number theory in 1977. Definition Stated mathematically, let be a positive integer with digits when written in base , and let the digits be a_i (i = 0, 1, \ldots, m-1). (It follows that a_i must be either zero or a positive integer up to .) can be expressed as :X=\sum_^ a_i n^i. is a harshad number in base if: :X \equiv 0 \bmod . A number which is a harshad number in every number base is called an all-harshad number, or an all-Niven number. There are only four all-harshad numbers: 1, 2, 4, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Highly Abundant Number
In mathematics, a highly abundant number is a natural number with the property that the sum of its divisors (including itself) is greater than the sum of the divisors of any smaller natural number. Highly abundant numbers and several similar classes of numbers were first introduced by , and early work on the subject was done by . Alaoglu and Erdős tabulated all highly abundant numbers up to 104, and showed that the number of highly abundant numbers less than any ''N'' is at least proportional to log2 ''N''. Formal definition and examples Formally, a natural number ''n'' is called highly abundant if and only if for all natural numbers ''m'' < ''n'', :\sigma(n) > \sigma(m) where σ denotes the sum-of-divisors function. The first few highly abundant numbers are : 1, 2, 3, 4, 6, 8, 10, 12, 16, 18, 20, 24, 30, 36, 42, 48, 60, ... . For instance, 5 is not highly abundant because σ(5) = 5+1 = 6 is smaller than σ(4) = 4 + 2 + 1 = 7, while 8 is highly abundant b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Primorial
In mathematics, and more particularly in number theory, primorial, denoted by "#", is a function from natural numbers to natural numbers similar to the factorial function, but rather than successively multiplying positive integers, the function only multiplies prime numbers. The name "primorial", coined by Harvey Dubner, draws an analogy to ''primes'' similar to the way the name "factorial" relates to ''factors''. Definition for prime numbers For the th prime number , the primorial is defined as the product of the first primes: :p_n\# = \prod_^n p_k, where is the th prime number. For instance, signifies the product of the first 5 primes: :p_5\# = 2 \times 3 \times 5 \times 7 \times 11 = 2310. The first five primorials are: : 2, 6, 30, 210, 2310 . The sequence also includes as empty product. Asymptotically, primorials grow according to: :p_n\# = e^, where is Little O notation. Definition for natural numbers In general, for a positive integer , its pri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Highly Composite Number
__FORCETOC__ A highly composite number is a positive integer with more divisors than any smaller positive integer has. The related concept of largely composite number refers to a positive integer which has at least as many divisors as any smaller positive integer. The name can be somewhat misleading, as the first two highly composite numbers (1 and 2) are not actually composite numbers; however, all further terms are. The late mathematician Jean-Pierre Kahane has suggested that Plato must have known about highly composite numbers as he deliberately chose 5040 as the ideal number of citizens in a city as 5040 has more divisors than any numbers less than it. Ramanujan wrote and titled his paper on the subject in 1915. Examples The initial or smallest 38 highly composite numbers are listed in the table below . The number of divisors is given in the column labeled ''d''(''n''). Asterisks indicate superior highly composite numbers. The divisors of the first 15 highly composite ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

60 (number)
60 (sixty) () is the natural number following 59 and preceding 61. Being three times 20, it is called '' threescore'' in older literature ('' kopa'' in Slavic, ''Schock'' in Germanic). In mathematics * 60 is a highly composite number. Because it is the sum of its unitary divisors (excluding itself), it is a unitary perfect number, and it is an abundant number with an abundance of 48. Being ten times a perfect number, it is a semiperfect number. * It is the smallest number divisible by the numbers 1 to 6: there is no smaller number divisible by the numbers 1 to 5. * It is the smallest number with exactly 12 divisors. * It is one of seven integers that have more divisors than any number less than twice itself , one of six that are also lowest common multiple of a consecutive set of integers from 1, and one of six that are divisors of every highly composite number higher than itself. * It is the smallest number that is the sum of two odd primes in six ways.Wells, D. ''The Penguin D ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Natural Number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''Cardinal number, cardinal numbers'', and numbers used for ordering are called ''Ordinal number, ordinal numbers''. Natural numbers are sometimes used as labels, known as ''nominal numbers'', having none of the properties of numbers in a mathematical sense (e.g. sports Number (sports), jersey numbers). Some definitions, including the standard ISO/IEC 80000, ISO 80000-2, begin the natural numbers with , corresponding to the non-negative integers , whereas others start with , corresponding to the positive integers Texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, while in other writings, that term is used instead for the integers (including negative integers). The natural ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]