Steinhaus–Moser Notation
   HOME





Steinhaus–Moser Notation
In mathematics, Steinhaus–Moser notation is a notation for expressing certain large numbers. It is an extension (devised by Leo Moser) of Hugo Steinhaus's polygon notation. Definitions : 20px, n in a triangle a number in a triangle means . : 20px, n in a square a number in a square is equivalent to "the number inside triangles, which are all nested." : 20px, n in a pentagon a number in a pentagon is equivalent to "the number inside squares, which are all nested." etc.: written in an ()-sided polygon is equivalent to "the number inside nested -sided polygons". In a series of nested polygons, they are associated inward. The number inside two triangles is equivalent to inside one triangle, which is equivalent to raised to the power of . Steinhaus defined only the triangle, the square, and the circle 20px, n in a circle, which is equivalent to the pentagon defined above. Special values Steinhaus defined: *mega is the number equivalent to 2 in a circle: *megis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Megagon
A megagon or 1,000,000-gon (million-gon) is a circle-like polygon with one million sides (mega-, from the Greek μέγας, meaning "great", being a unit prefix denoting a factor of one million). Regular megagon A regular megagon is represented by the Schläfli symbol and can be constructed as a truncated 500,000-gon, t, a twice-truncated 250,000-gon, tt, a thrice-truncated 125,000-gon, ttt, or a four-fold-truncated 62,500-gon, tttt, a five-fold-truncated 31,250-gon, , or a six-fold-truncated 15,625-gon, . A regular megagon has an interior angle of 179°59'58.704" or 3.14158637 radians. The area of a regular megagon with sides of length ''a'' is given by :A = 250,000 \ a^2 \cot \frac. The perimeter of a regular megagon inscribed in the unit circle is: :2,000,000 \ \sin\frac, which is very close to 2π. In fact, for a circle the size of the Earth's equator, with a circumference of 40,075 kilometres, one edge of a megagon inscribed in such a circle would be slightly over 4 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ackermann Function
In computability theory, the Ackermann function, named after Wilhelm Ackermann, is one of the simplest and earliest-discovered examples of a total function, total computable function that is not Primitive recursive function, primitive recursive. All primitive recursive functions are total and computable, but the Ackermann function illustrates that not all total computable functions are primitive recursive. After Ackermann's publication of his function (which had three non-negative integer arguments), many authors modified it to suit various purposes, so that today "the Ackermann function" may refer to any of numerous variants of the original function. One common version is the two-argument Ackermann–Péter function developed by Rózsa Péter and Raphael Robinson. This function is defined from the recurrence relation \operatorname(m+1, n+1) = \operatorname(m, \operatorname(m+1, n)) with appropriate Base case (recursion), base cases. Its value grows very rapidly; for example, \o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graham's Number
Graham's number is an Large numbers, immense number that arose as an upper bound on the answer of a problem in the mathematical field of Ramsey theory. It is much larger than many other large numbers such as Skewes's number and Moser's number, both of which are in turn much larger than a googolplex. As with these, it is so large that the observable universe is far too small to contain an ordinary Numerical digit, digital representation of Graham's number, assuming that each digit occupies one Planck volume, possibly the smallest measurable space. But even the number of digits in this digital representation of Graham's number would itself be a number so large that its digital representation cannot be represented in the observable universe. Nor even can the number of digits of ''that'' number—and so forth, for a number of times far exceeding the total number of Planck volumes in the observable universe. Thus, Graham's number cannot be expressed even by physical universe-scale Tetrat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Conway Chained Arrow Notation
Conway chained arrow notation, created by mathematician John Horton Conway, is a means of expressing certain extremely large numbers. It is simply a finite sequence of positive integers separated by rightward arrows, e.g. 2\to3\to4\to5\to6. As with most combinatorial notations, the definition is recursive. In this case the notation eventually resolves to being the leftmost number raised to some (usually enormous) integer power. Definition and overview A "Conway chain" is defined as follows: * Any positive integer is a chain of length 1. * A chain of length ''n'', followed by a right-arrow → and a positive integer, together form a chain of length n+1. Any chain represents an integer, according to the six rules below. Two chains are said to be equivalent if they represent the same integer. Let a, b, c denote positive integers and let \# denote the unchanged remainder of the chain. Then: #An empty chain (or a chain of length 0) is equal to 1. #The chain a represents the number a. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Large Numbers
Large numbers, far beyond those encountered in everyday life—such as simple counting or financial transactions—play a crucial role in various domains. These expansive quantities appear prominently in mathematics, cosmology, cryptography, and statistical mechanics. While they often manifest as large positive integers, they can also take other forms in different contexts (such as P-adic number). Googology delves into the naming conventions and properties of these immense numerical entities. Since the customary, traditional (non-technical) decimal format of large numbers can be lengthy, other systems have been devised that allows for shorter representation. For example, a billion is represented as 13 characters (1,000,000,000) in decimal format, but is only 3 characters (109) when expressed in exponential format. A trillion is 17 characters in decimal, but only 4 (1012) in exponential. Values that vary dramatically can be represented and compared graphically via logarithmic sca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Knuth's Up-arrow Notation
In mathematics, Knuth's up-arrow notation is a method of notation for very large integers, introduced by Donald Knuth in 1976. In his 1947 paper, R. L. Goodstein introduced the specific sequence of operations that are now called ''hyperoperations''. Goodstein also suggested the Greek names tetration, pentation, etc., for the extended operations beyond exponentiation. The sequence starts with a unary operation (the successor function with ''n'' = 0), and continues with the binary operations of addition (''n'' = 1), multiplication (''n'' = 2), exponentiation (''n'' = 3), tetration (''n'' = 4), pentation (''n'' = 5), etc. Various notations have been used to represent hyperoperations. One such notation is H_n(a,b). Knuth's up-arrow notation \uparrow is another. For example: * the single arrow \uparrow represents exponentiation (iterated multiplication) 2 \uparrow 4 = H_3(2,4) = 2\times(2\times(2\times 2)) = 2^4 = 16 * the double arrow \uparrow\uparrow represents tetration (iterated ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Iterated Function
In mathematics, an iterated function is a function that is obtained by composing another function with itself two or several times. The process of repeatedly applying the same function is called iteration. In this process, starting from some initial object, the result of applying a given function is fed again into the function as input, and this process is repeated. For example, on the image on the right: : Iterated functions are studied in computer science, fractals, dynamical systems, mathematics and renormalization group physics. Definition The formal definition of an iterated function on a set ''X'' follows. Let be a set and be a function. Defining as the ''n''-th iterate of , where ''n'' is a non-negative integer, by: f^0 ~ \stackrel ~ \operatorname_X and f^ ~ \stackrel ~ f \circ f^, where is the identity function on and denotes function composition. This notation has been traced to and John Frederick William Herschel in 1813. Herschel credited ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Notation
Mathematical notation consists of using glossary of mathematical symbols, symbols for representing operation (mathematics), operations, unspecified numbers, relation (mathematics), relations, and any other mathematical objects and assembling them into expression (mathematics), expressions and formulas. Mathematical notation is widely used in mathematics, science, and engineering for representing complex concepts and property (philosophy), properties in a concise, unambiguous, and accurate way. For example, the physicist Albert Einstein's formula E=mc^2 is the quantitative representation in mathematical notation of mass–energy equivalence. Mathematical notation was first introduced by François Viète at the end of the 16th century and largely expanded during the 17th and 18th centuries by René Descartes, Isaac Newton, Gottfried Wilhelm Leibniz, and overall Leonhard Euler. Symbols and typeface The use of many symbols is the basis of mathematical notation. They play a s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Association (mathematics)
In mathematics, the associative property is a property of some binary operations that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for expressions in logical proofs. Within an expression containing two or more occurrences in a row of the same associative operator, the order in which the operations are performed does not matter as long as the sequence of the operands is not changed. That is (after rewriting the expression with parentheses and in infix notation if necessary), rearranging the parentheses in such an expression will not change its value. Consider the following equations: \begin (2 + 3) + 4 &= 2 + (3 + 4) = 9 \,\\ 2 \times (3 \times 4) &= (2 \times 3) \times 4 = 24 . \end Even though the parentheses were rearranged on each line, the values of the expressions were not altered. Since this holds true when performing addition and multiplication on any real numbers, it c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]