HOME

TheInfoList



OR:

A megagon or 1,000,000-gon is a
polygon In geometry, a polygon () is a plane figure that is described by a finite number of straight line segments connected to form a closed ''polygonal chain'' (or ''polygonal circuit''). The bounded plane region, the bounding circuit, or the two toge ...
with one million sides (
mega- Mega is a metric prefix, unit prefix in metric systems of units denoting a factor of one million (106 or 1000000 (number), ). It has the unit symbol M. It was confirmed for use in the International System of Units (SI) in 1960. ''Mega'' comes fro ...
, from the Greek μέγας, meaning "great", being a unit prefix denoting a factor of one million).


Regular megagon

A regular megagon is represented by the
Schläfli symbol In geometry, the Schläfli symbol is a notation of the form \ that defines regular polytopes and tessellations. The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to more ...
and can be constructed as a truncated 500,000-gon, t, a twice-truncated 250,000-gon, tt, a thrice-truncated 125,000-gon, ttt, or a four-fold-truncated 62,500-gon, tttt, a five-fold-truncated 31,250-gon, , or a six-fold-truncated 15,625-gon, . A regular megagon has an interior angle of 179°59'58.704" 3.14158637 rad.Darling, David J.,
The Universal Book of Mathematics: from Abracadabra to Zeno's Paradoxes
', John Wiley & Sons, 2004. Page 249. .
The
area Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape A shape or figure is a graphics, graphical representation of an obje ...
of a regular megagon with sides of length ''a'' is given by :A = 250,000a^2 \cot \frac. The
perimeter A perimeter is a closed path that encompasses, surrounds, or outlines either a two dimensional shape or a one-dimensional length. The perimeter of a circle or an ellipse is called its circumference. Calculating the perimeter has several pract ...
of a regular megagon inscribed in the unit
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is const ...
is: :2,000,000 \sin\frac, which is very close to . In fact, for a circle the size of the
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
's equator, with a
circumference In geometry, the circumference (from Latin ''circumferens'', meaning "carrying around") is the perimeter of a circle or ellipse. That is, the circumference would be the arc length of the circle, as if it were opened up and straightened out to ...
of 40,075 kilometres, one edge of a megagon inscribed in such a circle would be slightly over 40 meters long. The difference between the perimeter of the inscribed megagon and the circumference of this circle comes to less than 1/16 millimeters. Because 1,000,000 = 26 × 56, the number of sides is not a product of distinct
Fermat prime In mathematics, a Fermat number, named after Pierre de Fermat, who first studied them, is a positive integer of the form :F_ = 2^ + 1, where ''n'' is a non-negative integer. The first few Fermat numbers are: : 3, 5, 17, 257, 65537, 4294967 ...
s and a power of two. Thus the regular megagon is not a
constructible polygon In mathematics, a constructible polygon is a regular polygon that can be constructed with compass and straightedge. For example, a regular pentagon is constructible with compass and straightedge while a regular heptagon is not. There are infinite ...
. Indeed, it is not even constructible with the use of an angle trisector, as the number of sides is neither a product of distinct
Pierpont prime In number theory, a Pierpont prime is a prime number of the form 2^u\cdot 3^v + 1\, for some nonnegative integers and . That is, they are the prime numbers for which is 3-smooth. They are named after the mathematician James Pierpont, who use ...
s, nor a product of powers of two and three.


Philosophical application

Like
René Descartes René Descartes ( or ; ; Latinized: Renatus Cartesius; 31 March 1596 – 11 February 1650) was a French philosopher, scientist, and mathematician, widely considered a seminal figure in the emergence of modern philosophy and science. Mathem ...
's example of the
chiliagon In geometry, a chiliagon () or 1000-gon is a polygon with 1,000 sides. Philosophers commonly refer to chiliagons to illustrate ideas about the nature and workings of thought, meaning, and mental representation. Regular chiliagon A '' regular c ...
, the million-sided polygon has been used as an illustration of a well-defined concept that cannot be visualised. The megagon is also used as an illustration of the convergence of regular polygons to a circle.


Symmetry

The ''regular megagon'' has Dih1,000,000
dihedral symmetry In mathematics, a dihedral group is the group of symmetries of a regular polygon, which includes rotations and reflections. Dihedral groups are among the simplest examples of finite groups, and they play an important role in group theory, ge ...
, order 2,000,000, represented by 1,000,000 lines of reflection. Dih1,000,000 has 48 dihedral subgroups: (Dih500,000, Dih250,000, Dih125,000, Dih62,500, Dih31,250, Dih15,625), (Dih200,000, Dih100,000, Dih50,000, Dih25,000, Dih12,500, Dih6,250, Dih3,125), (Dih40,000, Dih20,000, Dih10,000, Dih5,000, Dih2,500, Dih1,250, Dih625), (Dih8,000, Dih4,000, Dih2,000, Dih1,000, Dih500, Dih250, Dih125, Dih1,600, Dih800, Dih400, Dih200, Dih100, Dih50, Dih25), (Dih320, Dih160, Dih80, Dih40, Dih20, Dih10, Dih5), and (Dih64, Dih32, Dih16, Dih8, Dih4, Dih2, Dih1). It also has 49 more
cyclic Cycle, cycles, or cyclic may refer to: Anthropology and social sciences * Cyclic history, a theory of history * Cyclical theory, a theory of American political history associated with Arthur Schlesinger, Sr. * Social cycle, various cycles in s ...
symmetries as subgroups: (Z1,000,000, Z500,000, Z250,000, Z125,000, Z62,500, Z31,250, Z15,625), (Z200,000, Z100,000, Z50,000, Z25,000, Z12,500, Z6,250, Z3,125), (Z40,000, Z20,000, Z10,000, Z5,000, Z2,500, Z1,250, Z625), (Z8,000, Z4,000, Z2,000, Z1,000, Z500, Z250, Z125), (Z1,600, Z800, Z400, Z200, Z100, Z50, Z25), (Z320, Z160, Z80, Z40, Z20, Z10, Z5), and (Z64, Z32, Z16, Z8, Z4, Z2, Z1), with Zn representing π/''n'' radian rotational symmetry.
John Conway John Horton Conway (26 December 1937 – 11 April 2020) was an English mathematician active in the theory of finite groups, knot theory, number theory, combinatorial game theory and coding theory. He also made contributions to many branches ...
labeled these lower symmetries with a letter and order of the symmetry follows the letter.The Symmetries of Things, Chapter 20 r2000000 represents full symmetry and a1 labels no symmetry. He gives d (diagonal) with mirror lines through vertices, p with mirror lines through edges (perpendicular), i with mirror lines through both vertices and edges, and g for rotational symmetry. These lower symmetries allows degrees of freedom in defining irregular megagons. Only the g1000000 subgroup has no degrees of freedom but can be seen as
directed edge In mathematics, and more specifically in graph theory, a directed graph (or digraph) is a graph that is made up of a set of vertices connected by directed edges, often called arcs. Definition In formal terms, a directed graph is an ordered pa ...
s.


Megagram

A megagram is a million-sided
star polygon In geometry, a star polygon is a type of non-convex polygon. Regular star polygons have been studied in depth; while star polygons in general appear not to have been formally defined, certain notable ones can arise through truncation operations ...
. There are 199,999 regular forms given by
Schläfli symbol In geometry, the Schläfli symbol is a notation of the form \ that defines regular polytopes and tessellations. The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to more ...
s of the form , where ''n'' is an integer between 2 and 500,000 that is
coprime In mathematics, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equivale ...
to 1,000,000. There are also 300,000 regular
star figure In geometry, a generalized polygon can be called a polygram, and named specifically by its number of sides. All polygons are polygrams, but can also include disconnected sets of edges, called a compound polygon. For example, a regular pentagram, ...
s in the remaining cases.


See also

*
Chiliagon In geometry, a chiliagon () or 1000-gon is a polygon with 1,000 sides. Philosophers commonly refer to chiliagons to illustrate ideas about the nature and workings of thought, meaning, and mental representation. Regular chiliagon A '' regular c ...
*
Myriagon In geometry, a myriagon or 10000-gon is a polygon with 10,000 sides. Several philosophers have used the regular myriagon to illustrate issues regarding thought. Meditation VI by Descartes (English translation). Regular myriagon A regular myriag ...


Notes


References

{{Polygons Polygons by the number of sides