Skolem Problem
   HOME





Skolem Problem
In mathematics, the Skolem problem is the problem of determining whether the values of a constant-recursive sequence include the number zero. The problem can be formulated for recurrences over different types of numbers, including integers, rational numbers, and algebraic numbers. It is not known whether there exists an algorithm that can solve this problem.. A linear recurrence relation expresses the values of a sequence of numbers as a linear combination of earlier values; for instance, the Fibonacci numbers may be defined from the recurrence relation : together with the initial values and . The Skolem problem is named after Thoralf Skolem, because of his 1933 paper proving the Skolem–Mahler–Lech theorem on the zeros of a sequence satisfying a linear recurrence with constant coefficients. This theorem states that, if such a sequence has zeros, then with finitely many exceptions the positions of the zeros repeat regularly. Skolem proved this for recurrences over the rati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Recurrence With Constant Coefficients
In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence. The polynomial's linearity means that each of its terms has degree 0 or 1. A linear recurrence denotes the evolution of some variable over time, with the current time period or discrete moment in time denoted as , one period earlier denoted as , one period later as , etc. The ''solution'' of such an equation is a function of , and not of any iterate values, giving the value of the iterate at any time. To find the solution it is necessary to know the specific values (known as '' initial conditions'') of of the iterates, and normally these are the iterates that are oldest. The equation or its variable is said to be ''stable'' if from any set of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Constant-recursive Sequence
In mathematics, an sequence, infinite sequence of numbers s_0, s_1, s_2, s_3, \ldots is called constant-recursive if it satisfies an equation of the form :s_n = c_1 s_ + c_2 s_ + \dots + c_d s_, for all n \ge d, where c_i are constant (mathematics), constants. The equation is called a linear recurrence with constant coefficients, linear recurrence relation. The concept is also known as a linear recurrence sequence, linear-recursive sequence, linear-recurrent sequence, or a C-finite sequence. For example, the Fibonacci sequence :0, 1, 1, 2, 3, 5, 8, 13, \ldots, is constant-recursive because it satisfies the linear recurrence F_n = F_ + F_: each number in the sequence is the sum of the previous two. Other examples include the power of two sequence 1, 2, 4, 8, 16, \ldots, where each number is the sum of twice the previous number, and the square number sequence 0, 1, 4, 9, 16, 25, \ldots. All arithmetic progressions, all geometric progressions, and all polynomials are constant-recu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

NP-hard
In computational complexity theory, a computational problem ''H'' is called NP-hard if, for every problem ''L'' which can be solved in non-deterministic polynomial-time, there is a polynomial-time reduction from ''L'' to ''H''. That is, assuming a solution for ''H'' takes 1 unit time, ''H''s solution can be used to solve ''L'' in polynomial time. As a consequence, finding a polynomial time algorithm to solve a single NP-hard problem would give polynomial time algorithms for all the problems in the complexity class NP. As it is suspected, but unproven, that P≠NP, it is unlikely that any polynomial-time algorithms for NP-hard problems exist. A simple example of an NP-hard problem is the subset sum problem. Informally, if ''H'' is NP-hard, then it is at least as difficult to solve as the problems in NP. However, the opposite direction is not true: some problems are undecidable, and therefore even more difficult to solve than all problems in NP, but they are probably not NP- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Notes
''Mathematical Notes'' is a peer-reviewed mathematical journal published by Springer Science+Business Media on behalf of the Russian Academy of Sciences that covers all aspects of mathematics. It is an English language translation of the Russian-language journal ''Matematicheskie Zametki'' () and is published simultaneously with the Russian version. The journal was established in 1967 as ''Mathematical Notes of the Academy of Sciences of the USSR'' and obtained its current title in 1991. The current editor-in-chief is Victor P. Maslov. According to the ''Journal Citation Reports'', the journal has a 2011 impact factor of 0.295. The journal is indexed in Russian Science Citation Index Russian Science Citation Index (Russian: Российский индекс научного цитирования) is a bibliographic database of scientific publications in Russian. It holds around 13 million publications by Russian authors a .... References External links * {{Official ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Für Die Reine Und Angewandte Mathematik
''Crelle's Journal'', or just ''Crelle'', is the common name for a mathematics journal, the ''Journal für die reine und angewandte Mathematik'' (in English: ''Journal for Pure and Applied Mathematics''). History The journal was founded by August Leopold Crelle (Berlin) in 1826 and edited by him until his death in 1855. It was one of the first major mathematical journals that was not a proceedings of an academy. It has published many notable papers, including works of Niels Henrik Abel, Georg Cantor, Gotthold Eisenstein, Carl Friedrich Gauss and Otto Hesse. It was edited by Carl Wilhelm Borchardt from 1856 to 1880, during which time it was known as ''Borchardt's Journal''. The current editor-in-chief is Daniel Huybrechts (Rheinische Friedrich-Wilhelms-Universität Bonn). Past editors * 1826–1856: August Leopold Crelle * 1856–1880: Carl Wilhelm Borchardt * 1881–1888: Leopold Kronecker, Karl Weierstrass Karl Theodor Wilhelm Weierstrass (; ; 31 October 1815 � ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Empty Set
In mathematics, the empty set or void set is the unique Set (mathematics), set having no Element (mathematics), elements; its size or cardinality (count of elements in a set) is 0, zero. Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other theories, its existence can be deduced. Many possible properties of sets are vacuously true for the empty set. Any set other than the empty set is called ''non-empty''. In some textbooks and popularizations, the empty set is referred to as the "null set". However, null set is a distinct notion within the context of measure theory, in which it describes a set of measure zero (which is not necessarily empty). Notation Common notations for the empty set include "", "\emptyset", and "∅". The latter two symbols were introduced by the Bourbaki group (specifically André Weil) in 1939, inspired by the letter Ø () in the Danish orthography, Danish and Norwegian orthography, Norwegian a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bulletin De La Société Mathématique De France
'' Bulletin de la Société Mathématique de France'' is a mathematics journal published quarterly by Société Mathématique de France. Founded in 1873, the journal publishes articles on mathematics. It publishes articles in French and English. The journal is indexed by ''Mathematical Reviews'' and Zentralblatt MATH. Its 2009 MCQ was 0.58, and its 2009 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a type of journal ranking. Journals with higher impact factor values are considered more prestigious or important within their field. The Impact Factor of a journa ... was 0.400. External links * Mathematics journals Publications established in 1873 Multilingual journals Société Mathématique de France academic journals Quarterly journals {{math-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Root Of A Polynomial
In mathematics, a zero (also sometimes called a root) of a real-, complex-, or generally vector-valued function f, is a member x of the domain of f such that f(x) ''vanishes'' at x; that is, the function f attains the value of 0 at x, or equivalently, x is a solution to the equation f(x) = 0. A "zero" of a function is thus an input value that produces an output of 0. A root of a polynomial is a zero of the corresponding polynomial function. The fundamental theorem of algebra shows that any non-zero polynomial has a number of roots at most equal to its degree, and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an algebraically closed extension) counted with their multiplicities. For example, the polynomial f of degree two, defined by f(x)=x^2-5x+6=(x-2)(x-3) has the two roots (or zeros) that are 2 and 3. f(2)=2^2-5\times 2+6= 0\textf(3)=3^2-5\times 3+6=0. If the function maps real numbers to real n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Number System
A number is a mathematical object used to count, measure, and label. The most basic examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can be represented by symbols, called ''numerals''; for example, "5" is a numeral that represents the number five. As only a relatively small number of symbols can be memorized, basic numerals are commonly organized in a numeral system, which is an organized way to represent any number. The most common numeral system is the Hindu–Arabic numeral system, which allows for the representation of any non-negative integer using a combination of ten fundamental numeric symbols, called digits. In addition to their use in counting and measuring, numerals are often used for labels (as with telephone numbers), for ordering (as with serial numbers), and for codes (as with ISBNs). In common usage, a ''numeral'' is not clearly distinguished from the ''numb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theorem
In mathematics and formal logic, a theorem is a statement (logic), statement that has been Mathematical proof, proven, or can be proven. The ''proof'' of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems. In mainstream mathematics, the axioms and the inference rules are commonly left implicit, and, in this case, they are almost always those of Zermelo–Fraenkel set theory with the axiom of choice (ZFC), or of a less powerful theory, such as Peano arithmetic. Generally, an assertion that is explicitly called a theorem is a proved result that is not an immediate consequence of other known theorems. Moreover, many authors qualify as ''theorems'' only the most important results, and use the terms ''lemma'', ''proposition'' and ''corollary'' for less important theorems. In mathematical logic, the concepts of theorems and proofs have been formal system ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Skolem–Mahler–Lech Theorem
In additive and algebraic number theory, the Skolem–Mahler–Lech theorem states that if a sequence of numbers satisfies a linear difference equation, then with finitely many exceptions the positions at which the sequence is zero form a regularly repeating pattern. This result is named after Thoralf Skolem (who proved the theorem for sequences of rational numbers), Kurt Mahler (who proved it for sequences of algebraic numbers), and Christer Lech (who proved it for sequences whose elements belong to any field of characteristic 0). Its known proofs use -adic analysis and are non-constructive. Theorem statement Let s(n)_ be a sequence of complex numbers satisfying s(n) = c_1 s(n-1) + c_2 s(n-2) + \cdots + c_d s(n-d) for all n \ge d, where c_i are complex number constants (i.e., a constant-recursive sequence of order d). Then the set of zeros \ is equal to the union of a finite set and finitely many arithmetic progressions. If we have c_d \ne 0 (excluding sequences such as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]