Smooth Structure
In mathematics, a smooth structure on a manifold allows for an unambiguous notion of smooth function. In particular, a smooth structure allows one to perform mathematical analysis on the manifold. Definition A smooth structure on a manifold M is a collection of smoothly equivalent smooth atlases. Here, a smooth atlas for a topological manifold M is an atlas for M such that each transition function is a smooth map, and two smooth atlases for M are smoothly equivalent provided their union is again a smooth atlas for M. This gives a natural equivalence relation on the set of smooth atlases. A smooth manifold is a topological manifold M together with a smooth structure on M. Maximal smooth atlases By taking the union of all atlases belonging to a smooth structure, we obtain a maximal smooth atlas. This atlas contains every chart that is compatible with the smooth structure. There is a natural one-to-one correspondence between smooth structures and maximal smooth atlases. Th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Diffeomorphism
In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are differentiable. Definition Given two manifolds M and N, a differentiable map f \colon M \rightarrow N is called a diffeomorphism if it is a bijection and its inverse f^ \colon N \rightarrow M is differentiable as well. If these functions are r times continuously differentiable, f is called a C^r-diffeomorphism. Two manifolds M and N are diffeomorphic (usually denoted M \simeq N) if there is a diffeomorphism f from M to N. They are C^r-diffeomorphic if there is an r times continuously differentiable bijective map between them whose inverse is also r times continuously differentiable. Diffeomorphisms of subsets of manifolds Given a subset X of a manifold M and a subset Y of a manifold N, a function f:X\to Y is said to be smooth if for all p in X there is a neighbor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complex Manifold
In differential geometry and complex geometry, a complex manifold is a manifold with an atlas of charts to the open unit disc in \mathbb^n, such that the transition maps are holomorphic. The term complex manifold is variously used to mean a complex manifold in the sense above (which can be specified as an integrable complex manifold), and an almost complex manifold. Implications of complex structure Since holomorphic functions are much more rigid than smooth functions, the theories of smooth and complex manifolds have very different flavors: compact complex manifolds are much closer to algebraic varieties than to differentiable manifolds. For example, the Whitney embedding theorem tells us that every smooth ''n''-dimensional manifold can be embedded as a smooth submanifold of R2''n'', whereas it is "rare" for a complex manifold to have a holomorphic embedding into C''n''. Consider for example any compact connected complex manifold ''M'': any holomorphic function on it is cons ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Analytic Manifold
In mathematics, an analytic manifold, also known as a C^\omega manifold, is a differentiable manifold with analytic transition maps. The term usually refers to real analytic manifolds, although complex manifolds are also analytic. In algebraic geometry, analytic spaces are a generalization of analytic manifolds such that singularities are permitted. For U \subseteq \R^n, the space of analytic functions, C^(U), consists of infinitely differentiable functions f:U \to \R , such that the Taylor series T_f(\mathbf) = \sum_\frac (\mathbf-\mathbf)^\alpha converges to f(\mathbf) in a neighborhood of \mathbf, for all \mathbf \in U. The requirement that the transition maps be analytic is significantly more restrictive than that they be infinitely differentiable; the analytic manifolds are a proper subset of the smooth, i.e. C^\infty, manifolds. There are many similarities between the theory of analytic and smooth manifolds, but a critical difference is that analytic manifolds do not admi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Differential Manifold
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible (namely, the transition from one chart to another is differentiable), then computations done in one chart are valid in any other differentiable chart. In formal terms, a differentiable manifold is a topological manifold with a globally defined differential structure. Any topological manifold can be given a differential structure locally by using the homeomorphisms in its atlas and the standard differential structure on a vector space. To induce a global differential structure on the local coordinate systems induced by the homeomorphisms, th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rokhlin's Theorem
In 4-dimensional topology, a branch of mathematics, Rokhlin's theorem states that if a smooth, closed 4-manifold ''M'' has a spin structure (or, equivalently, the second Stiefel–Whitney class w_2(M) vanishes), then the signature of its intersection form, a quadratic form on the second cohomology group H^2(M), is divisible by 16. The theorem is named for Vladimir Rokhlin, who proved it in 1952. Examples *The intersection form on ''M'' ::Q_M\colon H^2(M,\Z)\times H^2(M,\Z)\rightarrow \mathbb :is unimodular on \Z by Poincaré duality, and the vanishing of w_2(M) implies that the intersection form is even. By a theorem of Cahit Arf, any even unimodular lattice has signature divisible by 8, so Rokhlin's theorem forces one extra factor of 2 to divide the signature. *A K3 surface is compact, 4 dimensional, and w_2(M) vanishes, and the signature is −16, so 16 is the best possible number in Rokhlin's theorem. *A complex surface in \mathbb^3 of degree d is spin if and only if d is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Topological Manifold
In topology, a branch of mathematics, a topological manifold is a topological space that locally resembles real ''n''-dimensional Euclidean space. Topological manifolds are an important class of topological spaces, with applications throughout mathematics. All manifolds are topological manifolds by definition. Other types of manifolds are formed by adding structure to a topological manifold (e.g. differentiable manifolds are topological manifolds equipped with a differential structure). Every manifold has an "underlying" topological manifold, obtained by simply "forgetting" the added structure. However, not every topological manifold can be endowed with a particular additional structure. For example, the E8 manifold is a topological manifold which cannot be endowed with a differentiable structure. Formal definition A topological space ''X'' is called locally Euclidean if there is a non-negative integer ''n'' such that every point in ''X'' has a neighborhood which is homeomorphi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
E8 Manifold
In mathematics, the ''E''8 manifold is the unique compact, simply connected topological 4-manifold with intersection form the ''E''8 lattice. History The E_8 manifold was discovered by Michael Freedman in 1982. Rokhlin's theorem shows that it has no smooth structure (as does Donaldson's theorem), and in fact, combined with the work of Andrew Casson on the Casson invariant, this shows that the E_8 manifold is not even triangulable as a simplicial complex. Construction The manifold can be constructed by first plumbing together disc bundles of Euler number 2 over the sphere, according to the Dynkin diagram for E_8. This results in P_, a 4-manifold with boundary equal to the Poincaré homology sphere. Freedman's theorem on fake 4-balls then says we can cap off this homology sphere with a fake 4-ball to obtain the E_8 manifold. See also * * * References * * {{DEFAULTSORT:E8 Manifold 4-manifolds Geometric topology Manifold In mathematics, a manifold is a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Exotic Sphere
In an area of mathematics called differential topology, an exotic sphere is a differentiable manifold ''M'' that is homeomorphic but not diffeomorphic to the standard Euclidean ''n''-sphere. That is, ''M'' is a sphere from the point of view of all its topological properties, but carrying a smooth structure that is not the familiar one (hence the name "exotic"). The first exotic spheres were constructed by in dimension n = 7 as S^3- bundles over S^4. He showed that there are at least 7 differentiable structures on the 7-sphere. In any dimension showed that the diffeomorphism classes of oriented exotic spheres form the non-trivial elements of an abelian monoid under connected sum, which is a finite abelian group if the dimension is not 4. The classification of exotic spheres by showed that the oriented exotic 7-spheres are the non-trivial elements of a cyclic group of order 28 under the operation of connected sum. Introduction The unit ''n''-sphere, S^n, is the set of all ('' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
John Milnor
John Willard Milnor (born February 20, 1931) is an American mathematician known for his work in differential topology, algebraic K-theory and low-dimensional holomorphic dynamical systems. Milnor is a distinguished professor at Stony Brook University and one of the five mathematicians to have won the Fields Medal, the Wolf Prize, and the Abel Prize (the others being Serre, Thompson, Deligne, and Margulis.) Early life and career Milnor was born on February 20, 1931, in Orange, New Jersey. His father was J. Willard Milnor and his mother was Emily Cox Milnor. As an undergraduate at Princeton University he was named a Putnam Fellow in 1949 and 1950 and also proved the Fáry–Milnor theorem when he was only 19 years old. Milnor graduated with an A.B. in mathematics in 1951 after completing a senior thesis, titled "Link groups", under the supervision of Robert H. Fox. He remained at Princeton to pursue graduate studies and received his Ph.D. in mathematics in 1954 after completi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Compact Space
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i.e. that the space not exclude any ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topologic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of n-dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane. The concept of a manifold is central to many parts of geometry and modern mathematical physics because it allows complicated structures to be described in terms of well-understood topological properties of simpler spaces. Manifolds naturally arise as solution sets of systems of equations and as graphs of functions. The concept has applications in computer-graphics given the need to associate pictures with coordinates (e.g ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |