HOME
*





Smale Conjecture
The Smale conjecture, named after Stephen Smale, is the statement that the diffeomorphism group of the 3-sphere has the homotopy-type of its isometry group, the orthogonal group O(4). It was proved in 1983 by Allen Hatcher. Equivalent statements There are several equivalent statements of the Smale conjecture. One is that the component of the unknot in the space of smooth embeddings of the circle in 3-space has the homotopy-type of the round circles, equivalently, O(3). Interestingly, this statement is not equivalent to the generalized Smale Conjecture, in higher dimensions. Another equivalent statement is that the group of diffeomorphisms of the 3-ball which restrict to the identity on the boundary is contractible. Yet another equivalent statement is that the space of constant-curvature Riemann metrics on the 3-sphere is contractible. Higher dimensions The (false) statement that the inclusion O(n+1) \to \text(S^n) is a weak equivalence for all n is sometimes meant whe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stephen Smale
Stephen Smale (born July 15, 1930) is an American mathematician, known for his research in topology, dynamical systems and mathematical economics. He was awarded the Fields Medal in 1966 and spent more than three decades on the mathematics faculty of the University of California, Berkeley (1960–1961 and 1964–1995), where he currently is Professor Emeritus, with research interests in algorithms, numerical analysis and global analysis. Education and career Smale was born in Flint, Michigan and entered the University of Michigan in 1948. Initially, he was a good student, placing into an honors calculus sequence taught by Bob Thrall and earning himself A's. However, his sophomore and junior years were marred with mediocre grades, mostly Bs, Cs and even an F in nuclear physics. However, with some luck, Smale was accepted as a graduate student at the University of Michigan's mathematics department. Yet again, Smale performed poorly in his first years, earning a C average as a g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diffeomorphism
In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are differentiable. Definition Given two manifolds M and N, a differentiable map f \colon M \rightarrow N is called a diffeomorphism if it is a bijection and its inverse f^ \colon N \rightarrow M is differentiable as well. If these functions are r times continuously differentiable, f is called a C^r-diffeomorphism. Two manifolds M and N are diffeomorphic (usually denoted M \simeq N) if there is a diffeomorphism f from M to N. They are C^r-diffeomorphic if there is an r times continuously differentiable bijective map between them whose inverse is also r times continuously differentiable. Diffeomorphisms of subsets of manifolds Given a subset X of a manifold M and a subset Y of a manifold N, a function f:X\to Y is said to be smooth if for all p in X there is a neighbor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

3-sphere
In mathematics, a 3-sphere is a higher-dimensional analogue of a sphere. It may be embedded in 4-dimensional Euclidean space as the set of points equidistant from a fixed central point. Analogous to how the boundary of a ball in three dimensions is an ordinary sphere (or 2-sphere, a two-dimensional surface), the boundary of a ball in four dimensions is a 3-sphere (an object with three dimensions). A 3-sphere is an example of a 3-manifold and an ''n''-sphere. Definition In coordinates, a 3-sphere with center and radius is the set of all points in real, 4-dimensional space () such that :\sum_^3(x_i - C_i)^2 = ( x_0 - C_0 )^2 + ( x_1 - C_1 )^2 + ( x_2 - C_2 )^2+ ( x_3 - C_3 )^2 = r^2. The 3-sphere centered at the origin with radius 1 is called the unit 3-sphere and is usually denoted : :S^3 = \left\. It is often convenient to regard as the space with 2 complex dimensions () or the quaternions (). The unit 3-sphere is then given by :S^3 = \left\ or :S^3 = \left\. This ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Orthogonal Group
In mathematics, the orthogonal group in dimension , denoted , is the Group (mathematics), group of isometry, distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by Function composition, composing transformations. The orthogonal group is sometimes called the general orthogonal group, by analogy with the general linear group. Equivalently, it is the group of orthogonal matrix, orthogonal matrices, where the group operation is given by matrix multiplication (an orthogonal matrix is a real matrix whose invertible matrix, inverse equals its transpose). The orthogonal group is an algebraic group and a Lie group. It is compact group, compact. The orthogonal group in dimension has two connected component (topology), connected components. The one that contains the identity element is a normal subgroup, called the special orthogonal group, and denoted . It consists of all orthogonal matrices of determinant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Allen Hatcher
Allen, Allen's or Allens may refer to: Buildings * Allen Arena, an indoor arena at Lipscomb University in Nashville, Tennessee * Allen Center, a skyscraper complex in downtown Houston, Texas * Allen Fieldhouse, an indoor sports arena on the University of Kansas campus in Lawrence * Allen House (other) * Allen Power Plant (other) Businesses *Allen (brand), an American tool company *Allen's, an Australian brand of confectionery * Allens (law firm), an Australian law firm formerly known as Allens Arthur Robinson *Allen's (restaurant), a former hamburger joint and nightclub in Athens, Georgia, United States *Allen & Company LLC, a small, privately held investment bank *Allens of Mayfair, a butcher shop in London from 1830 to 2015 *Allens Boots, a retail store in Austin, Texas * Allens, Inc., a brand of canned vegetables based in Arkansas, US, now owned by Del Monte Foods * Allen's department store, a.k.a. Allen's, George Allen, Inc., Philadelphia, USA People * Allen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ball (mathematics)
In mathematics, a ball is the solid figure bounded by a ''sphere''; it is also called a solid sphere. It may be a closed ball (including the boundary points that constitute the sphere) or an open ball (excluding them). These concepts are defined not only in three-dimensional Euclidean space but also for lower and higher dimensions, and for metric spaces in general. A ''ball'' in dimensions is called a hyperball or -ball and is bounded by a ''hypersphere'' or ()-sphere. Thus, for example, a ball in the Euclidean plane is the same thing as a disk, the area bounded by a circle. In Euclidean 3-space, a ball is taken to be the volume bounded by a 2-dimensional sphere. In a one-dimensional space, a ball is a line segment. In other contexts, such as in Euclidean geometry and informal use, ''sphere'' is sometimes used to mean ''ball''. In the field of topology the closed n-dimensional ball is often denoted as B^n or D^n while the open n-dimensional ball is \operatorname B^n or \ope ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kontsevich Integral
In the mathematical theory of knots, the Kontsevich invariant, also known as the Kontsevich integral of an oriented framed link, is a universal Vassiliev invariant in the sense that any coefficient of the Kontsevich invariant is of a finite type, and conversely any finite type invariant can be presented as a linear combination of such coefficients. It was defined by Maxim Kontsevich. The Kontsevich invariant is a universal quantum invariant in the sense that any quantum invariant may be recovered by substituting the appropriate weight system into any Jacobi diagram. Definition The Kontsevich invariant is defined by monodromy along solutions of the Knizhnik–Zamolodchikov equations. Jacobi diagram and Chord diagram Definition Let be a circle (which is a 1-dimensional manifold). As is shown in the figure on the right, a Jacobi diagram with order is the graph with vertices, with the external circle depicted as solid line circle and with dashed lines called inner grap ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gauss Linking Integral
In mathematics, the linking number is a numerical invariant that describes the linking of two closed curves in three-dimensional space. Intuitively, the linking number represents the number of times that each curve winds around the other. In Euclidean space, the linking number is always an integer, but may be positive or negative depending on the orientation of the two curves (this is not true for curves in most 3-manifolds, where linking numbers can also be fractions or just not exist at all). The linking number was introduced by Gauss in the form of the linking integral. It is an important object of study in knot theory, algebraic topology, and differential geometry, and has numerous applications in mathematics and science, including quantum mechanics, electromagnetism, and the study of DNA supercoiling. Definition Any two closed curves in space, if allowed to pass through themselves but not each other, can be moved into exactly one of the following standard positions. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Sphere Bundle
In the mathematical field of topology, a sphere bundle is a fiber bundle in which the fibers are spheres S^n of some dimension ''n''. Similarly, in a disk bundle, the fibers are disks D^n. From a topological perspective, there is no difference between sphere bundles and disk bundles: this is a consequence of the Alexander trick, which implies \operatorname(D^) \simeq \operatorname(S^n). An example of a sphere bundle is the torus, which is orientable and has S^1 fibers over an S^1 base space. The non-orientable Klein bottle also has S^1 fibers over an S^1 base space, but has a twist that produces a reversal of orientation as one follows the loop around the base space. A circle bundle is a special case of a sphere bundle. Orientation of a sphere bundle A sphere bundle that is a product space is orientable, as is any sphere bundle over a simply connected space. If ''E'' be a real vector bundle on a space ''X'' and if ''E'' is given an orientation, then a sphere bundle formed from ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quanta Magazine
''Quanta Magazine'' is an editorially independent online publication of the Simons Foundation covering developments in physics, mathematics, biology and computer science. ''Undark Magazine'' described ''Quanta Magazine'' as "highly regarded for its masterful coverage of complex topics in science and math." The science news aggregator ''RealClearScience'' ranked ''Quanta Magazine'' first on its list of "The Top 10 Websites for Science in 2018." In 2020, the magazine received a National Magazine Award for General Excellence from the American Society of Magazine Editors for its "willingness to tackle some of the toughest and most difficult topics in science and math in a language that is accessible to the lay reader without condescension or oversimplification." The articles in the magazine are freely available to read online. ''Scientific American'', ''Wired'', ''The Atlantic'', and ''The Washington Post'', as well as international science publications like ''Spektrum der Wissensch ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Smooth Manifolds
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible (namely, the transition from one chart to another is differentiable), then computations done in one chart are valid in any other differentiable chart. In formal terms, a differentiable manifold is a topological manifold with a globally defined differential structure. Any topological manifold can be given a differential structure locally by using the homeomorphisms in its atlas and the standard differential structure on a vector space. To induce a global differential structure on the local coordinate systems induced by the homeomorphisms, th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Low-dimensional Topology
In mathematics, low-dimensional topology is the branch of topology that studies manifolds, or more generally topological spaces, of four or fewer dimensions. Representative topics are the structure theory of 3-manifolds and 4-manifolds, knot theory, and braid groups. This can be regarded as a part of geometric topology. It may also be used to refer to the study of topological spaces of dimension 1, though this is more typically considered part of continuum theory. History A number of advances starting in the 1960s had the effect of emphasising low dimensions in topology. The solution by Stephen Smale, in 1961, of the Poincaré conjecture in five or more dimensions made dimensions three and four seem the hardest; and indeed they required new methods, while the freedom of higher dimensions meant that questions could be reduced to computational methods available in surgery theory. Thurston's geometrization conjecture, formulated in the late 1970s, offered a framework that sugge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]