HOME





Shear Velocity
Shear velocity, also called friction velocity, is a form by which a shear stress may be re-written in units of velocity. It is useful as a method in fluid mechanics to compare true velocities, such as the velocity of a flow in a stream, to a velocity that relates shear between layers of flow. Shear velocity is used to describe shear-related motion in moving fluids. It is used to describe: * Diffusion and dispersion of particles, tracers, and contaminants in fluid flows * The velocity profile near the boundary of a flow (see Law of the wall) * Transport of sediment in a channel Shear velocity also helps in thinking about the rate of shear and dispersion in a flow. Shear velocity scales well to rates of dispersion and bedload sediment transport. A general rule is that the shear velocity is between 5% and 10% of the mean flow velocity. For river base case, the shear velocity can be calculated by Manning's equation. :u^*=\langle u\rangle\frac(gR_h^)^ * ''n'' is the Gauckler–Mann ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Shear Stress
Shear stress (often denoted by , Greek alphabet, Greek: tau) is the component of stress (physics), stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. ''Normal stress'', on the other hand, arises from the force vector component perpendicular to the material cross section on which it acts. General shear stress The formula to calculate average shear stress or force per unit area is: \tau = ,where is the force applied and is the cross-sectional area. The area involved corresponds to the material face (geometry), face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force. Other forms Wall shear stress Wall shear stress expresses the retarding force (per unit area) from a wall in the layers of a fluid flowing next to the wall. It is defined as:\tau_w := \mu\left.\frac\_,where is the dynamic viscosity, is the flow velocity, and is the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Velocity
Velocity is a measurement of speed in a certain direction of motion. It is a fundamental concept in kinematics, the branch of classical mechanics that describes the motion of physical objects. Velocity is a vector (geometry), vector Physical quantity, quantity, meaning that both magnitude and direction are needed to define it. The Scalar (physics), scalar absolute value (Magnitude (mathematics), magnitude) of velocity is called , being a coherent derived unit whose quantity is measured in the International System of Units, SI (metric system) as metres per second (m/s or m⋅s−1). For example, "5 metres per second" is a scalar, whereas "5 metres per second east" is a vector. If there is a change in speed, direction or both, then the object is said to be undergoing an ''acceleration''. Definition Average velocity The average velocity of an object over a period of time is its Displacement (geometry), change in position, \Delta s, divided by the duration of the period, \Delt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fluid Mechanics
Fluid mechanics is the branch of physics concerned with the mechanics of fluids (liquids, gases, and plasma (physics), plasmas) and the forces on them. Originally applied to water (hydromechanics), it found applications in a wide range of disciplines, including mechanical engineering, mechanical, aerospace engineering, aerospace, civil engineering, civil, chemical engineering, chemical, and biomedical engineering, as well as geophysics, oceanography, meteorology, astrophysics, and biology. It can be divided into ''fluid statics'', the study of various fluids at rest; and ''fluid dynamics'', the study of the effect of forces on fluid motion. It is a branch of ''continuum mechanics'', a subject which models matter without using the information that it is made out of atoms; that is, it models matter from a macroscopic viewpoint rather than from microscopic. Fluid mechanics, especially fluid dynamics, is an active field of research, typically mathematically complex. Many problems a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diffusion
Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical potential. It is possible to diffuse "uphill" from a region of lower concentration to a region of higher concentration, as in spinodal decomposition. Diffusion is a stochastic process due to the inherent randomness of the diffusing entity and can be used to model many real-life stochastic scenarios. Therefore, diffusion and the corresponding mathematical models are used in several fields beyond physics, such as statistics, probability theory, information theory, neural networks, finance, and marketing. The concept of diffusion is widely used in many fields, including physics (Molecular diffusion, particle diffusion), chemistry, biology, sociology, economics, statistics, data science, and finance (diffusion of people, ideas, data and price v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dispersion (water Waves)
In fluid dynamics, dispersion of ocean surface wave, water waves generally refers to Dispersion relation, frequency dispersion, which means that waves of different wavelengths travel at different phase speeds. Water waves, in this context, are waves propagating on the surface wave, water surface, with Earth's gravity, gravity and surface tension as the restoring forces. As a result, water with a free surface is generally considered to be a dispersion relation, dispersive medium. For a certain water depth, surface gravity waves – i.e. waves occurring at the air–water interface and gravity as the only force restoring it to flatness – propagate faster with increasing wavelength. On the other hand, for a given (fixed) wavelength, gravity waves in deeper water have a larger phase speed than in shallow water equations, shallower water. In contrast with the behavior of gravity waves, capillary waves (i.e. only forced by surface tension) propagate faster for shorter wavelengths. Bes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Law Of The Wall
In fluid dynamics, the law of the wall (also known as the logarithmic law of the wall) states that the average velocity of a turbulent flow at a certain point is proportional to the logarithm of the distance from that point to the "wall", or the boundary of the fluid region. This law of the wall was first published in 1930 by Hungarian-American mathematician, aerospace engineer, and physicist Theodore von Kármán. It is only technically applicable to parts of the flow that are close to the wall (<20% of the height of the flow), though it is a good approximation for the entire velocity profile of natural streams.


General logarithmic formulation

The logarithmic law of the wall is a solution for the mean velocity parallel to the wall, and is valid for flows at high

picture info

Density
Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be used: \rho = \frac, where ''ρ'' is the density, ''m'' is the mass, and ''V'' is the volume. In some cases (for instance, in the United States oil and gas industry), density is loosely defined as its weight per unit volume, although this is scientifically inaccurate this quantity is more specifically called specific weight. For a pure substance, the density is equal to its mass concentration. Different materials usually have different densities, and density may be relevant to buoyancy, purity and packaging. Osmium is the densest known element at standard conditions for temperature and pressure. To simplify comparisons of density across different systems of units, it is sometimes replaced by the dimensionless quantity "relative den ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Darcy Friction Factor
Darcy, Darci or Darcey may refer to different people such as: Science * Darcy's law, which describes the flow of a fluid through porous material * Darcy (unit), a unit of permeability of fluids in porous material * Darcy friction factor in the field of fluid mechanics * Darcy–Weisbach equation used in hydraulics for calculation of the head loss due to friction People * Darcy (surname), a surname (including a list of people with the name) Men * Darci Afonso Jacobi Júnior (born 1979), Brazilian footballer * Darcy Blake (born 1988), Welsh footballer * Darcy Dallas (born 1972), Canadian ice hockey defenceman * Darcy Cameron (born 1995), Australian rules footballer * Darcy Daniher (born 1989), Australian rules footballer * Darci Frigo, Brazilian activist * Darcy Furber, Canadian politician * Darcy Gardiner (born 1995), Australian rules footballer * Darcy Hordichuk (born 1980), professional ice hockey player * Darcy Kuemper (born 1990), professional ice hockey player ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Non-dimensionalization And Scaling Of The Navier–Stokes Equations
Nondimensionalization is the partial or full removal of physical dimensions from an equation involving physical quantities by a suitable substitution of variables. This technique can simplify and parameterize problems where measured units are involved. It is closely related to dimensional analysis. In some physical systems, the term ''scaling'' is used interchangeably with ''nondimensionalization'', in order to suggest that certain quantities are better measured relative to some appropriate unit. These units refer to quantities intrinsic to the system, rather than units such as SI units. Nondimensionalization is not the same as converting extensive quantities in an equation to intensive quantities, since the latter procedure results in variables that still carry units. Nondimensionalization can also recover characteristic properties of a system. For example, if a system has an intrinsic resonance frequency, length, or time constant, nondimensionalization can recover these ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Planetary Boundary Layer
In meteorology, the planetary boundary layer (PBL), also known as the atmospheric boundary layer (ABL) or peplosphere, is the lowest part of the atmosphere and its behaviour is directly influenced by its contact with a planetary surface. On Earth it usually responds to changes in surface radiative forcing in an hour or less. In this layer physical quantities such as flow velocity, temperature, and moisture display rapid fluctuations (turbulence) and vertical mixing is strong. Above the PBL is the "free atmosphere", where the wind is approximately geostrophic wind, geostrophic (parallel to the isobars), while within the PBL the wind is affected by surface Drag (physics), drag and turns across the Contour line#Barometric pressure, isobars (see Ekman layer for more detail). Cause of surface wind gradient Typically, due to aerodynamic drag (force), drag, there is a wind gradient in the wind flow ~100 meters above the Earth's surface—the surface layer of the planetary boundary ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Log Wind Profile
The log wind profile is a semi-empirical relationship commonly used to describe the vertical distribution of horizontal mean wind speed within the lowest portion of the planetary boundary layer (PBL). The logarithmic profile of wind speeds is generally limited to the lowest 100 m of the atmosphere (i.e., the surface layer of the atmospheric boundary layer). The rest of the atmosphere is composed of the remaining part of the PBL (up to around 1 km) and the troposphere or free atmosphere. In the free atmosphere, geostrophic wind relationships should be used, instead. Formulation The equation to estimate the mean wind speed (u_z) at height z (meters) above the ground is: :u_z = \frac \left ln \left(\frac \right) + \psi(z,z_0,L)\right/math> where u_* is the friction velocity (m s−1), \kappa is the Von Kármán constant (~0.41), d is the zero plane displacement (in metres), z_0 is the surface roughness (in meters), and \psi is a stability term where L is the Obukhov length from ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Von Kármán Constant
In fluid dynamics, the von Kármán constant (or Kármán's constant), named for Theodore von Kármán, is a dimensionless constant involved in the logarithmic law describing the distribution of the longitudinal velocity in the wall-normal direction of a turbulent fluid flow near a boundary with a no-slip condition. The equation for such boundary layer flow profiles is: :u=\frac\ln\frac, where ''u'' is the mean flow velocity at height ''z'' above the boundary. The roughness height (also known as roughness length) ''z0'' is where u appears to go to zero. Further ''κ'' is the von Kármán constant being typically 0.41, and u_\star is the friction velocity which depends on the shear stress ''τw'' at the boundary of the flow: :u_\star = \sqrt, with ''ρ'' the fluid density. The Kármán constant is often used in turbulence modeling, for instance in boundary-layer meteorology to calculate fluxes of momentum, heat and moisture from the atmosphere to the land surface. It is consid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]