HOME
*





Schubert Calculus
In mathematics, Schubert calculus is a branch of algebraic geometry introduced in the nineteenth century by Hermann Schubert, in order to solve various counting problems of projective geometry (part of enumerative geometry). It was a precursor of several more modern theories, for example characteristic classes, and in particular its algorithmic aspects are still of current interest. The phrase "Schubert calculus" is sometimes used to mean the enumerative geometry of linear subspaces, roughly equivalent to describing the cohomology ring of Grassmannians, and sometimes used to mean the more general enumerative geometry of nonlinear varieties. Even more generally, "Schubert calculus" is often understood to encompass the study of analogous questions in generalized cohomology theories. The objects introduced by Schubert are the Schubert cells, which are locally closed sets in a Grassmannian defined by conditions of incidence of a linear subspace in projective space with a given flag. F ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hilbert's Fifteenth Problem
Hilbert's fifteenth problem is one of the 23 Hilbert problems set out in a celebrated list compiled in 1900 by David Hilbert. The problem is to put Schubert's enumerative calculus on a rigorous foundation. Introduction Schubert calculus is the intersection theory of the 19th century, together with applications to enumerative geometry. Justifying this calculus was the content of Hilbert's 15th problem, and was also the major topic of the 20 century algebraic geometry.Hilbert, David, "Mathematische Probleme" Göttinger Nachrichten, (1900), pp. 253-297, and in Archiv der Mathematik und Physik, (3) 1 (1901), 44-63 and 213-237. Published in English translation by Dr. Maby Winton Newson, Bulletin of the American Mathematical Society 8 (1902), 437-47
.
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bruhat Decomposition
In mathematics, the Bruhat decomposition (introduced by François Bruhat for classical groups and by Claude Chevalley in general) ''G'' = ''BWB'' of certain algebraic groups ''G'' into cells can be regarded as a general expression of the principle of Gauss–Jordan elimination, which generically writes a matrix as a product of an upper triangular and lower triangular matrices—but with exceptional cases. It is related to the Schubert cell decomposition of flag varieties: see Weyl group for this. More generally, any group with a (''B'', ''N'') pair has a Bruhat decomposition. Definitions *''G'' is a connected, reductive algebraic group over an algebraically closed field. *''B'' is a Borel subgroup of ''G'' *''W'' is a Weyl group of ''G'' corresponding to a maximal torus of ''B''. The Bruhat decomposition of ''G'' is the decomposition :G=BWB =\bigsqcup_BwB of ''G'' as a disjoint union of double cosets of ''B'' parameterized by the elements of the Weyl group ''W''. (Note that alt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mirror Symmetry Conjecture
In mathematics, mirror symmetry is a conjectural relationship between certain Calabi–Yau manifolds and a constructed "mirror manifold". The conjecture allows one to relate the number of rational curves on a Calabi-Yau manifold (encoded as Gromov–Witten invariants) to integrals from a family of varieties (encoded as period integrals on a variation of Hodge structures). In short, this means there is a relation between the number of genus g algebraic curves of degree d on a Calabi-Yau variety X and integrals on a dual variety \check. These relations were original discovered by Candelas, de la Ossa, Green, and Parkes in a paper studying a generic quintic threefold in \mathbb^4 as the variety X and a construction from the quintic Dwork family X_\psi giving \check = \tilde_\psi. Shortly after, Sheldon Katz wrote a summary paper outlining part of their construction and conjectures what the rigorous mathematical interpretation could be. Constructing the mirror of a quintic threefo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Quintic Threefold
In mathematics, a quintic threefold is a 3-dimensional hypersurface of degree 5 in 4-dimensional projective space \mathbb^4. Non-singular quintic threefolds are Calabi–Yau manifolds. The Hodge diamond of a non-singular quintic 3-fold is Mathematician Robbert Dijkgraaf said "One number which every algebraic geometer knows is the number 2,875 because obviously, that is the number of lines on a quintic." Definition A quintic threefold is a special class of Calabi–Yau manifolds defined by a degree 5 projective variety in \mathbb^4. Many examples are constructed as hypersurfaces in \mathbb^4, or complete intersections lying in \mathbb^4, or as a smooth variety resolving the singularities of another variety. As a set, a Calabi-Yau manifold isX = \where p(x) is a degree 5 homogeneous polynomial. One of the most studied examples is from the polynomialp(x) = x_0^5 + x_1^5 + x_2^5 + x_3^5 + x_4^5called a Fermat polynomial. Proving that such a polynomial defines a Calabi-Yau requires ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chern Class
In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since found applications in physics, Calabi–Yau manifolds, string theory, Chern–Simons theory, knot theory, Gromov–Witten invariants, topological quantum field theory, the Chern theorem etc. Chern classes were introduced by . Geometric approach Basic idea and motivation Chern classes are characteristic classes. They are topological invariants associated with vector bundles on a smooth manifold. The question of whether two ostensibly different vector bundles are the same can be quite hard to answer. The Chern classes provide a simple test: if the Chern classes of a pair of vector bundles do not agree, then the vector bundles are different. The converse, however, is not true. In topology, differential geometry, and algebraic geometry, it is often important to count how many l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pieri's Formula
In mathematics, Pieri's formula, named after Mario Pieri, describes the product of a Schubert cycle by a special Schubert cycle in the Schubert calculus, or the product of a Schur polynomial by a complete symmetric function. In terms of Schur functions ''s''λ indexed by partitions λ, it states that :\displaystyle s_\mu h_r=\sum_\lambda s_\lambda where ''h''''r'' is a complete homogeneous symmetric polynomial and the sum is over all partitions λ obtained from μ by adding ''r'' elements, no two in the same column. By applying the ω involution on the ring of symmetric functions, one obtains the dual Pieri rule for multiplying an elementary symmetric polynomial with a Schur polynomial: :\displaystyle s_\mu e_r=\sum_\lambda s_\lambda The sum is now taken over all partitions λ obtained from μ by adding ''r'' elements, no two in the same ''row''. Pieri's formula implies Giambelli's formula. The Littlewood–Richardson rule In mathematics, the Lit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Giambelli's Formula
In mathematics, Giambelli's formula, named after Giovanni Giambelli, expresses Schubert classes in terms of special Schubert classes, or Schur functions in terms of complete symmetric functions. It states :\displaystyle \sigma_\lambda= \det(\sigma_)_ where σλ is the Schubert class of a partition λ. Giambelli's formula is a consequence of Pieri's formula. The Porteous formula is a generalization to morphisms of vector bundles over a variety. See also * Schubert calculus In mathematics, Schubert calculus is a branch of algebraic geometry introduced in the nineteenth century by Hermann Schubert, in order to solve various counting problems of projective geometry (part of enumerative geometry). It was a precursor of ... - includes examples References * * Symmetric functions {{algebraic-geometry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Intersection Theory
In mathematics, intersection theory is one of the main branches of algebraic geometry, where it gives information about the intersection of two subvarieties of a given variety. The theory for varieties is older, with roots in Bézout's theorem on curves and elimination theory. On the other hand, the topological theory more quickly reached a definitive form. There is yet an ongoing development of intersection theory. Currently the main focus is on: virtual fundamental cycles, quantum intersection rings, Gromov-Witten theory and the extension of intersection theory from schemes to stacks. Topological intersection form For a connected oriented manifold of dimension the intersection form is defined on the -th cohomology group (what is usually called the 'middle dimension') by the evaluation of the cup product on the fundamental class in . Stated precisely, there is a bilinear form :\lambda_M \colon H^n(M,\partial M) \times H^n(M,\partial M)\to \mathbf given by :\lambda ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Enumerative Geometry
In mathematics, enumerative geometry is the branch of algebraic geometry concerned with counting numbers of solutions to geometric questions, mainly by means of intersection theory. History The problem of Apollonius is one of the earliest examples of enumerative geometry. This problem asks for the number and construction of circles that are tangent to three given circles, points or lines. In general, the problem for three given circles has eight solutions, which can be seen as 23, each tangency condition imposing a quadratic condition on the space of circles. However, for special arrangements of the given circles, the number of solutions may also be any integer from 0 (no solutions) to six; there is no arrangement for which there are seven solutions to Apollonius' problem. Key tools A number of tools, ranging from the elementary to the more advanced, include: * Dimension counting * Bézout's theorem * Schubert calculus, and more generally characteristic classes in cohomology ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Euler Class
In mathematics, specifically in algebraic topology, the Euler class is a characteristic class of oriented, real vector bundles. Like other characteristic classes, it measures how "twisted" the vector bundle is. In the case of the tangent bundle of a smooth manifold, it generalizes the classical notion of Euler characteristic. It is named after Leonhard Euler because of this. Throughout this article E is an oriented, real vector bundle of rank r over a base space X. Formal definition The Euler class e(E) is an element of the integral cohomology group :H^r(X; \mathbf), constructed as follows. An orientation of E amounts to a continuous choice of generator of the cohomology :H^r(\mathbf^, \mathbf^ \setminus \; \mathbf)\cong \tilde^(S^;\mathbf)\cong \mathbf of each fiber \mathbf^ relative to the complement \mathbf^ \setminus \ of zero. From the Thom isomorphism, this induces an orientation class :u \in H^r(E, E \setminus E_0; \mathbf) in the cohomology of E relative to the co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cubic Surface
In mathematics, a cubic surface is a surface in 3-dimensional space defined by one polynomial equation of degree 3. Cubic surfaces are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine space, and so cubic surfaces are generally considered in projective 3-space \mathbf^3. The theory also becomes more uniform by focusing on surfaces over the complex numbers rather than the real numbers; note that a complex surface has real dimension 4. A simple example is the Fermat cubic surface :x^3+y^3+z^3+w^3=0 in \mathbf^3. Many properties of cubic surfaces hold more generally for del Pezzo surfaces. Rationality of cubic surfaces A central feature of smooth cubic surfaces ''X'' over an algebraically closed field is that they are all rational, as shown by Alfred Clebsch in 1866. That is, there is a one-to-one correspondence defined by rational functions between the projective plane \mathbf^2 minus a lower-dimensional subset and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]