Schottky Problem
In mathematics, the Schottky problem, named after Friedrich Schottky, is a classical question of algebraic geometry, asking for a characterisation of Jacobian varieties amongst abelian varieties. Geometric formulation More precisely, one should consider algebraic curves C of a given genus g, and their Jacobians \operatorname(C). There is a moduli space \mathcal_g of such curves, and a moduli space of abelian varieties, \mathcal_g, of dimension g, which are ''principally polarized''. There is a morphism\operatorname: \mathcal_g \to \mathcal_gwhich on points (geometric points, to be more accurate) takes isomorphism class /math> to operatorname(C)/math>. The content of Torelli's theorem is that \operatorname is injective (again, on points). The Schottky problem asks for a description of the image of \operatorname, denoted \mathcal_g = \operatorname(\mathcal_g). The dimension of \mathcal_g is 3g - 3, for g \geq 2, while the dimension of ''\mathcal_g'' is ''g''(''g'' + 1)/2. This me ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Elliptic Curve
In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions for: :y^2 = x^3 + ax + b for some coefficients and in . The curve is required to be non-singular, which means that the curve has no cusps or self-intersections. (This is equivalent to the condition , that is, being square-free in .) It is always understood that the curve is really sitting in the projective plane, with the point being the unique point at infinity. Many sources define an elliptic curve to be simply a curve given by an equation of this form. (When the coefficient field has characteristic 2 or 3, the above equation is not quite general enough to include all non-singular cubic cu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Takahiro Shiota
is a Japanese mathematician at Kyoto University. In 1986, he proved Novikov's conjecture about the Riemann–Schottky problem by characterization of Jacobian varieties. Shiota obtained his doctorate at Harvard University Harvard University is a private Ivy League research university in Cambridge, Massachusetts. Founded in 1636 as Harvard College and named for its first benefactor, the Puritan clergyman John Harvard, it is the oldest institution of higher le ... in 1984. References Year of birth missing (living people) Living people 20th-century Japanese mathematicians 21st-century Japanese mathematicians Harvard University alumni Academic staff of Kyoto University {{Japan-scientist-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Homology Group
In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topology. Similar constructions are available in a wide variety of other contexts, such as abstract algebra, groups, Lie algebras, Galois theory, and algebraic geometry. The original motivation for defining homology groups was the observation that two shapes can be distinguished by examining their holes. For instance, a circle is not a disk because the circle has a hole through it while the disk is solid, and the ordinary sphere is not a circle because the sphere encloses a two-dimensional hole while the circle encloses a one-dimensional hole. However, because a hole is "not there", it is not immediately obvious how to define a hole or how to distinguish different kinds of holes. Homology was originally a rigorous mathematical method for defi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abelian Integral
In mathematics, an abelian integral, named after the Norwegian mathematician Niels Henrik Abel, is an integral in the complex plane of the form :\int_^z R(x,w) \, dx, where R(x,w) is an arbitrary rational function of the two variables x and w, which are related by the equation :F(x,w)=0, where F(x,w) is an irreducible polynomial in w, :F(x,w)\equiv\varphi_n(x)w^n+\cdots+\varphi_1(x)w +\varphi_0\left(x\right), whose coefficients \varphi_j(x), j=0,1,\ldots,n are rational functions of x. The value of an abelian integral depends not only on the integration limits, but also on the path along which the integral is taken; it is thus a multivalued function of z. Abelian integrals are natural generalizations of elliptic integrals, which arise when :F(x,w)=w^2-P(x), \, where P\left(x\right) is a polynomial of degree 3 or 4. Another special case of an abelian integral is a hyperelliptic integral, where P(x), in the formula above, is a polynomial of degree greater than 4. Histor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Period Matrix
In mathematics, in the field of algebraic geometry, the period mapping relates families of Kähler manifolds to families of Hodge structures. Ehresmann's theorem Let be a holomorphic submersive morphism. For a point ''b'' of ''B'', we denote the fiber of ''f'' over ''b'' by ''X''''b''. Fix a point 0 in ''B''. Ehresmann's theorem guarantees that there is a small open neighborhood ''U'' around 0 in which ''f'' becomes a fiber bundle. That is, is diffeomorphic to . In particular, the composite map :X_b \hookrightarrow f^(U) \cong X_0 \times U \twoheadrightarrow X_0 is a diffeomorphism. This diffeomorphism is not unique because it depends on the choice of trivialization. The trivialization is constructed from smooth paths in ''U'', and it can be shown that the homotopy class of the diffeomorphism depends only on the choice of a homotopy class of paths from ''b'' to 0. In particular, if ''U'' is contractible, there is a well-defined diffeomorphism up to homotopy. The diffe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Solomon Lefschetz
Solomon Lefschetz (russian: Соломо́н Ле́фшец; 3 September 1884 – 5 October 1972) was an American mathematician who did fundamental work on algebraic topology, its applications to algebraic geometry, and the theory of non-linear ordinary differential equations. Life He was born in Moscow, the son of Alexander Lefschetz and his wife Sarah or Vera Lifschitz, Jewish traders who used to travel around Europe and the Middle East (they held Ottoman passports). Shortly thereafter, the family moved to Paris. He was educated there in engineering at the École Centrale Paris, but emigrated to the US in 1905. He was badly injured in an industrial accident in 1907, losing both hands. He moved towards mathematics, receiving a Ph.D. in algebraic geometry from Clark University in Worcester, Massachusetts in 1911. He then took positions in University of Nebraska and University of Kansas, moving to Princeton University in 1924, where he was soon given a permanent position. He rema ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complex Projective Space
In mathematics, complex projective space is the projective space with respect to the field of complex numbers. By analogy, whereas the points of a real projective space label the lines through the origin of a real Euclidean space, the points of a complex projective space label the ''complex'' lines through the origin of a complex Euclidean space (see below for an intuitive account). Formally, a complex projective space is the space of complex lines through the origin of an (''n''+1)-dimensional complex vector space. The space is denoted variously as P(C''n''+1), P''n''(C) or CP''n''. When , the complex projective space CP1 is the Riemann sphere, and when , CP2 is the complex projective plane (see there for a more elementary discussion). Complex projective space was first introduced by as an instance of what was then known as the "geometry of position", a notion originally due to Lazare Carnot, a kind of synthetic geometry that included other projective geometries as well. Sub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Riemann Theta Function
In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory. The most common form of theta function is that occurring in the theory of elliptic functions. With respect to one of the complex variables (conventionally called ), a theta function has a property expressing its behavior with respect to the addition of a period of the associated elliptic functions, making it a quasiperiodic function. In the abstract theory this quasiperiodicity comes from the cohomology class of a line bundle on a complex torus, a condition of descent. One interpretation of theta functions when dealing with the heat equation is that "a theta function is a special function that describes the evolution of temperature on a segment domain subject to certain boundary conditions". Throughout this article, (e^)^ should be ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Theta Function
In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory. The most common form of theta function is that occurring in the theory of elliptic functions. With respect to one of the complex variables (conventionally called ), a theta function has a property expressing its behavior with respect to the addition of a period of the associated elliptic functions, making it a quasiperiodic function. In the abstract theory this quasiperiodicity comes from the cohomology class of a line bundle on a complex torus, a condition of descent. One interpretation of theta functions when dealing with the heat equation is that "a theta function is a special function that describes the evolution of temperature on a segment domain subject to certain boundary conditions". Throughout this article, (e^)^ should b ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bernhard Riemann
Georg Friedrich Bernhard Riemann (; 17 September 1826 – 20 July 1866) was a German mathematician who made contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the first rigorous formulation of the integral, the Riemann integral, and his work on Fourier series. His contributions to complex analysis include most notably the introduction of Riemann surfaces, breaking new ground in a natural, geometric treatment of complex analysis. His 1859 paper on the prime-counting function, containing the original statement of the Riemann hypothesis, is regarded as a foundational paper of analytic number theory. Through his pioneering contributions to differential geometry, Riemann laid the foundations of the mathematics of general relativity. He is considered by many to be one of the greatest mathematicians of all time. Biography Early years Riemann was born on 17 September 1826 in Breselenz, a village near Dannenb ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Riemann Tensor
In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor (after Bernhard Riemann and Elwin Bruno Christoffel) is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold (i.e., it is a tensor field). It is a local invariant of Riemannian metrics which measures the failure of the second covariant derivatives to commute. A Riemannian manifold has zero curvature if and only if it is ''flat'', i.e. locally isometric to the Euclidean space. The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection. It is a central mathematical tool in the theory of general relativity, the modern theory of gravity, and the curvature of spacetime is in principle observable via the geodesic deviation equation. The curvature tensor represents the tidal force experienced by a rigid body moving alo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |