In
mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, the Schottky problem, named after
Friedrich Schottky
Friedrich Hermann Schottky (24 July 1851 – 12 August 1935) was a German mathematician who worked on elliptic, abelian, and theta functions and introduced Schottky groups and Schottky's theorem. He was born in Breslau, Germany (now Wrocław, ...
, is a classical question of
algebraic geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical ...
, asking for a characterisation of
Jacobian varieties amongst
abelian varieties
In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular function ...
.
Geometric formulation
More precisely, one should consider
algebraic curve
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane c ...
s
of a given
genus
Genus ( plural genera ) is a taxonomic rank used in the biological classification of extant taxon, living and fossil organisms as well as Virus classification#ICTV classification, viruses. In the hierarchy of biological classification, genus com ...
, and their Jacobians
. There is a
moduli space
In mathematics, in particular algebraic geometry, a moduli space is a geometric space (usually a scheme or an algebraic stack) whose points represent algebro-geometric objects of some fixed kind, or isomorphism classes of such objects. Such spac ...
of such curves, and a
moduli space of abelian varieties,
, of dimension
, which are ''principally polarized''. There is a morphism
which on points (
geometric point
This is a glossary of algebraic geometry.
See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry.
...
s, to be more accurate) takes isomorphism class