Real Closed Ring
In mathematics, a real closed ring (RCR) is a commutative ring ''A'' that is a subring of a product of real closed fields, which is closed under continuous semi-algebraic functions defined over the integers. Examples of real closed rings Since the rigorous definition of a real closed ring is of technical nature it is convenient to see a list of prominent examples first. The following rings are all real closed rings: * real closed fields. These are exactly the real closed rings that are fields. * the ring of all real-valued continuous functions on a completely regular space ''X''. Also, the ring of all bounded real-valued continuous functions on ''X'' is real closed. * convex subrings of real closed fields. These are precisely those real closed rings which are also valuation rings and were initially studied by Cherlin and Dickmann (they used the term "real closed ring" for what is now called a "real closed valuation ring"). * the ring ''A'' of all continuous semi-algebraic funct ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Definable Set
In mathematical logic, a definable set is an ''n''-ary relation on the domain of a structure whose elements satisfy some formula in the first-order language of that structure. A set can be defined with or without parameters, which are elements of the domain that can be referenced in the formula defining the relation. Definition Let \mathcal be a first-order language, \mathcal an \mathcal-structure with domain M, X a fixed subset of M, and m a natural number. Then: * A set A\subseteq M^m is ''definable in \mathcal with parameters from X'' if and only if there exists a formula \varphi _1,\ldots,x_m,y_1,\ldots,y_n/math> and elements b_1,\ldots,b_n\in X such that for all a_1,\ldots,a_m\in M, :(a_1,\ldots,a_m)\in A if and only if \mathcal\models\varphi _1,\ldots,a_m,b_1,\ldots,b_n/math> :The bracket notation here indicates the semantic evaluation of the free variables in the formula. * A set ''A is definable in \mathcal without parameters'' if it is definable in \mathcal with paramet ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Number
An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio, (1 + \sqrt)/2, is an algebraic number, because it is a root of the polynomial . That is, it is a value for x for which the polynomial evaluates to zero. As another example, the complex number 1 + i is algebraic because it is a root of . All integers and rational numbers are algebraic, as are all roots of integers. Real and complex numbers that are not algebraic, such as and , are called transcendental numbers. The set of algebraic numbers is countably infinite and has measure zero in the Lebesgue measure as a subset of the uncountable complex numbers. In that sense, almost all complex numbers are transcendental. Examples * All rational numbers are algebraic. Any rational number, expressed as the quotient of an integer and a (non-zero) natural number , satisfies the above definition, because is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ordered Field
In mathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. The basic example of an ordered field is the field of real numbers, and every Dedekind-complete ordered field is isomorphic to the reals. Every subfield of an ordered field is also an ordered field in the inherited order. Every ordered field contains an ordered subfield that is isomorphic to the rational numbers. Squares are necessarily non-negative in an ordered field. This implies that the complex numbers cannot be ordered since the square of the imaginary unit ''i'' is . Finite fields cannot be ordered. Historically, the axiomatization of an ordered field was abstracted gradually from the real numbers, by mathematicians including David Hilbert, Otto Hölder and Hans Hahn. This grew eventually into the Artin–Schreier theory of ordered fields and formally real fields. Definitions There are two equivalent common definitions of an ordered f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Polynomial Ring
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, often a field. Often, the term "polynomial ring" refers implicitly to the special case of a polynomial ring in one indeterminate over a field. The importance of such polynomial rings relies on the high number of properties that they have in common with the ring of the integers. Polynomial rings occur and are often fundamental in many parts of mathematics such as number theory, commutative algebra, and algebraic geometry. In ring theory, many classes of rings, such as unique factorization domains, regular rings, group rings, rings of formal power series, Ore polynomials, graded rings, have been introduced for generalizing some properties of polynomial rings. A closely related notion is that of the ring ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Injective
In mathematics, an injective function (also known as injection, or one-to-one function) is a function that maps distinct elements of its domain to distinct elements; that is, implies . (Equivalently, implies in the equivalent contrapositive statement.) In other words, every element of the function's codomain is the image of one element of its domain. The term must not be confused with that refers to bijective functions, which are functions such that each element in the codomain is an image of exactly one element in the domain. A homomorphism between algebraic structures is a function that is compatible with the operations of the structures. For all common algebraic structures, and, in particular for vector spaces, an is also called a . However, in the more general context of category theory, the definition of a monomorphism differs from that of an injective homomorphism. This is thus a theorem that they are equivalent for algebraic structures; see for more details. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ring Homomorphism
In ring theory, a branch of abstract algebra, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if ''R'' and ''S'' are rings, then a ring homomorphism is a function such that ''f'' is: :addition preserving: ::f(a+b)=f(a)+f(b) for all ''a'' and ''b'' in ''R'', :multiplication preserving: ::f(ab)=f(a)f(b) for all ''a'' and ''b'' in ''R'', :and unit (multiplicative identity) preserving: ::f(1_R)=1_S. Additive inverses and the additive identity are part of the structure too, but it is not necessary to require explicitly that they too are respected, because these conditions are consequences of the three conditions above. If in addition ''f'' is a bijection, then its inverse ''f''−1 is also a ring homomorphism. In this case, ''f'' is called a ring isomorphism, and the rings ''R'' and ''S'' are called ''isomorphic''. From the standpoint of ring theory, isomorphic rings cannot be distinguished. If ''R'' and ''S'' are rngs, then the cor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Field Of Fractions
In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the field of rational numbers. Intuitively, it consists of ratios between integral domain elements. The field of fractions of R is sometimes denoted by \operatorname(R) or \operatorname(R), and the construction is sometimes also called the fraction field, field of quotients, or quotient field of R. All four are in common usage, but are not to be confused with the quotient of a ring by an ideal, which is a quite different concept. For a commutative ring which is not an integral domain, the analogous construction is called the localization or ring of quotients. Definition Given an integral domain and letting R^* = R \setminus \, we define an equivalence relation on R \times R^* by letting (n,d) \sim (m,b) whenever nb = md. We denote the equivale ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Integrally Closed Domain
In commutative algebra, an integrally closed domain ''A'' is an integral domain whose integral closure in its field of fractions is ''A'' itself. Spelled out, this means that if ''x'' is an element of the field of fractions of ''A'' which is a root of a monic polynomial with coefficients in ''A,'' then ''x'' is itself an element of ''A.'' Many well-studied domains are integrally closed: fields, the ring of integers Z, unique factorization domains and regular local rings are all integrally closed. Note that integrally closed domains appear in the following chain of class inclusions: Basic properties Let ''A'' be an integrally closed domain with field of fractions ''K'' and let ''L'' be a field extension of ''K''. Then ''x''∈''L'' is integral over ''A'' if and only if it is algebraic over ''K'' and its minimal polynomial over ''K'' has coefficients in ''A''. In particular, this means that any element of ''L'' integral over ''A'' is root of a monic polynomial in ''A'' 'X'' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Residue Class Ring
In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra. It is a specific example of a quotient, as viewed from the general setting of universal algebra. Starting with a ring and a two-sided ideal in , a new ring, the quotient ring , is constructed, whose elements are the cosets of in subject to special and operations. (Only the fraction slash "/" is used in quotient ring notation, not a horizontal fraction bar.) Quotient rings are distinct from the so-called "quotient field", or field of fractions, of an integral domain as well as from the more general "rings of quotients" obtained by localization. Formal quotient ring construction Given a ring and a two-sided ideal in , we may define an equivalence relation on as follows: : if and only if is in . Using the ideal properties, it is no ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prime Ideal
In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together with the zero ideal. Primitive ideals are prime, and prime ideals are both primary and semiprime. Prime ideals for commutative rings An ideal of a commutative ring is prime if it has the following two properties: * If and are two elements of such that their product is an element of , then is in or is in , * is not the whole ring . This generalizes the following property of prime numbers, known as Euclid's lemma: if is a prime number and if divides a product of two integers, then divides or divides . We can therefore say :A positive integer is a prime number if and only if n\Z is a prime ideal in \Z. Examples * A simple example: In the ring R=\Z, the subset of even numbers is a prime ideal. * Given an integral domain R ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
F-ring
In abstract algebra, a partially ordered ring is a ring (''A'', +, ·), together with a ''compatible partial order'', that is, a partial order \,\leq\, on the underlying set ''A'' that is compatible with the ring operations in the sense that it satisfies: x \leq y \text x + z \leq y + z and 0 \leq x \text 0 \leq y \text 0 \leq x \cdot y for all x, y, z\in A. Various extensions of this definition exist that constrain the ring, the partial order, or both. For example, an Archimedean partially ordered ring is a partially ordered ring (A, \leq) where partially ordered additive group is Archimedean. An ordered ring, also called a totally ordered ring, is a partially ordered ring (A, \leq) where \,\leq\, is additionally a total order. An l-ring, or lattice-ordered ring, is a partially ordered ring (A, \leq) where \,\leq\, is additionally a lattice order. Properties The additive group of a partially ordered ring is always a partially ordered group. The set of non-negative elements ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |