F-ring
   HOME
*





F-ring
In abstract algebra, a partially ordered ring is a ring (''A'', +, ·), together with a ''compatible partial order'', that is, a partial order \,\leq\, on the underlying set ''A'' that is compatible with the ring operations in the sense that it satisfies: x \leq y \text x + z \leq y + z and 0 \leq x \text 0 \leq y \text 0 \leq x \cdot y for all x, y, z\in A. Various extensions of this definition exist that constrain the ring, the partial order, or both. For example, an Archimedean partially ordered ring is a partially ordered ring (A, \leq) where partially ordered additive group is Archimedean. An ordered ring, also called a totally ordered ring, is a partially ordered ring (A, \leq) where \,\leq\, is additionally a total order. An l-ring, or lattice-ordered ring, is a partially ordered ring (A, \leq) where \,\leq\, is additionally a lattice order. Properties The additive group of a partially ordered ring is always a partially ordered group. The set of non-negative elements ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Abstract Algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term ''abstract algebra'' was coined in the early 20th century to distinguish this area of study from older parts of algebra, and more specifically from elementary algebra, the use of variables to represent numbers in computation and reasoning. Algebraic structures, with their associated homomorphisms, form mathematical categories. Category theory is a formalism that allows a unified way for expressing properties and constructions that are similar for various structures. Universal algebra is a related subject that studies types of algebraic structures as single objects. For example, the structure of groups is a single object in universal algebra, which is called the ''variety of groups''. History Before the nineteenth century, algebra meant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a mathematical space that allows for the definition of limits, continuity, and connectedness. Common types of topological spaces include Euclidean spaces, metric spaces and manifolds. Although very general, the concept of topological spaces is fundamental, and used in virtually every branch of modern mathematics. The study of topological spac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Commutative Ring
In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings. Definition and first examples Definition A ''ring'' is a set R equipped with two binary operations, i.e. operations combining any two elements of the ring to a third. They are called ''addition'' and ''multiplication'' and commonly denoted by "+" and "\cdot"; e.g. a+b and a \cdot b. To form a ring these two operations have to satisfy a number of properties: the ring has to be an abelian group under addition as well as a monoid under multiplication, where multiplication distributes over addition; i.e., a \cdot \left(b + c\right) = \left(a \cdot b\right) + \left(a \cdot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isabelle (theorem Prover)
The Isabelle automated theorem prover is a higher-order logic (HOL) theorem prover, written in Standard ML and Scala. As an LCF-style theorem prover, it is based on a small logical core (kernel) to increase the trustworthiness of proofs without requiring yet supporting explicit proof objects. Isabelle is available inside a flexible system framework allowing for logically safe extensions, which comprise both theories as well as implementations for code-generation, documentation, and specific support for a variety of formal methods. It can be seen as an IDE for formal methods. In recent years, a substantial number of theories and system extensions have been collected in the Isabelle ''Archive of Formal Proofs'' (Isabelle AFP) Isabelle was named by Lawrence Paulson after Gérard Huet's daughter. The Isabelle theorem prover is free software, released under the revised BSD license. Features Isabelle is generic: it provides a meta-logic (a weak type theory), which is used to e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Library (computing)
In computer science, a library is a collection of non-volatile memory, non-volatile resources used by computer programs, often for software development. These may include configuration data, documentation, help data, message templates, Code reuse, pre-written code and subroutines, Class (computer science), classes, Value (computer science), values or Data type, type specifications. In OS/360 and successors, IBM's OS/360 and its successors they are referred to as Data set (IBM mainframe)#Partitioned datasets, partitioned data sets. A library is also a collection of implementations of behavior, written in terms of a language, that has a well-defined interface (computing), interface by which the behavior is invoked. For instance, people who want to write a higher-level program can use a library to make system calls instead of implementing those system calls over and over again. In addition, the behavior is provided for reuse by multiple independent programs. A program invokes the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Axiom Of Choice
In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection of sets, each containing at least one element, it is possible to construct a new set by arbitrarily choosing one element from each set, even if the collection is infinite. Formally, it states that for every indexed family (S_i)_ of nonempty sets, there exists an indexed set (x_i)_ such that x_i \in S_i for every i \in I. The axiom of choice was formulated in 1904 by Ernst Zermelo in order to formalize his proof of the well-ordering theorem. In many cases, a set arising from choosing elements arbitrarily can be made without invoking the axiom of choice; this is, in particular, the case if the number of sets from which to choose the elements is finite, or if a canonical rule on how to choose the elements is available – some distinguishin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category (mathematics)
In mathematics, a category (sometimes called an abstract category to distinguish it from a concrete category) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the category of sets, whose objects are sets and whose arrows are functions. '' Category theory'' is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent. Virtually every branch of modern mathematics can be described in terms of categories, and doing so often reveals deep insights and similarities between seemingly different areas of mathematics. As such, category theory provides an alternative foundation for mathematics to set theory and other proposed axiomatic foundations. In general, the objects and arrows may be abstract entities of any kind, and the n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Image (mathematics)
In mathematics, the image of a function is the set of all output values it may produce. More generally, evaluating a given function f at each element of a given subset A of its domain produces a set, called the "image of A under (or through) f". Similarly, the inverse image (or preimage) of a given subset B of the codomain of f, is the set of all elements of the domain that map to the members of B. Image and inverse image may also be defined for general binary relations, not just functions. Definition The word "image" is used in three related ways. In these definitions, f : X \to Y is a function from the set X to the set Y. Image of an element If x is a member of X, then the image of x under f, denoted f(x), is the value of f when applied to x. f(x) is alternatively known as the output of f for argument x. Given y, the function f is said to "" or "" if there exists some x in the function's domain such that f(x) = y. Similarly, given a set S, f is said to "" if there exi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Direct Product
In mathematics, one can often define a direct product of objects already known, giving a new one. This generalizes the Cartesian product of the underlying sets, together with a suitably defined structure on the product set. More abstractly, one talks about the product in category theory, which formalizes these notions. Examples are the product of sets, groups (described below), rings, and other algebraic structures. The product of topological spaces is another instance. There is also the direct sum – in some areas this is used interchangeably, while in others it is a different concept. Examples * If we think of \R as the set of real numbers, then the direct product \R \times \R is just the Cartesian product \. * If we think of \R as the group of real numbers under addition, then the direct product \R\times \R still has \ as its underlying set. The difference between this and the preceding example is that \R \times \R is now a group, and so we have to also say how to add their ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Real Closed Ring
In mathematics, a real closed ring (RCR) is a commutative ring ''A'' that is a subring of a product of real closed fields, which is closed under continuous semi-algebraic functions defined over the integers. Examples of real closed rings Since the rigorous definition of a real closed ring is of technical nature it is convenient to see a list of prominent examples first. The following rings are all real closed rings: * real closed fields. These are exactly the real closed rings that are fields. * the ring of all real-valued continuous functions on a completely regular space ''X''. Also, the ring of all bounded real-valued continuous functions on ''X'' is real closed. * convex subrings of real closed fields. These are precisely those real closed rings which are also valuation rings and were initially studied by Cherlin and Dickmann (they used the term "real closed ring" for what is now called a "real closed valuation ring"). * the ring ''A'' of all continuous semi-algebraic funct ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Localization (commutative Algebra)
In commutative algebra and algebraic geometry, localization is a formal way to introduce the "denominators" to a given ring or module. That is, it introduces a new ring/module out of an existing ring/module ''R'', so that it consists of fractions \frac, such that the denominator ''s'' belongs to a given subset ''S'' of ''R''. If ''S'' is the set of the non-zero elements of an integral domain, then the localization is the field of fractions: this case generalizes the construction of the field \Q of rational numbers from the ring \Z of integers. The technique has become fundamental, particularly in algebraic geometry, as it provides a natural link to sheaf theory. In fact, the term ''localization'' originated in algebraic geometry: if ''R'' is a ring of functions defined on some geometric object (algebraic variety) ''V'', and one wants to study this variety "locally" near a point ''p'', then one considers the set ''S'' of all functions that are not zero at ''p'' and localizes ''R'' wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]