Pullback
   HOME
*





Pullback
In mathematics, a pullback is either of two different, but related processes: precomposition and fiber-product. Its dual is a pushforward. Precomposition Precomposition with a function probably provides the most elementary notion of pullback: in simple terms, a function f of a variable y, where y itself is a function of another variable x, may be written as a function of x. This is the pullback of f by the function y. f(y(x)) \equiv g(x) It is such a fundamental process that it is often passed over without mention. However, it is not just functions that can be "pulled back" in this sense. Pullbacks can be applied to many other objects such as differential forms and their cohomology classes; see * Pullback (differential geometry) * Pullback (cohomology) Fiber-product The pullback bundle is an example that bridges the notion of a pullback as precomposition, and the notion of a pullback as a Cartesian square. In that example, the base space of a fiber bundle is pulled back, in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pullback (category Theory)
In category theory, a branch of mathematics, a pullback (also called a fiber product, fibre product, fibered product or Cartesian square) is the limit of a diagram consisting of two morphisms and with a common codomain. The pullback is often written : and comes equipped with two natural morphisms and . The pullback of two morphisms and need not exist, but if it does, it is essentially uniquely defined by the two morphisms. In many situations, may intuitively be thought of as consisting of pairs of elements with in , in , and . For the general definition, a universal property is used, which essentially expresses the fact that the pullback is the "most general" way to complete the two given morphisms to a commutative square. The dual concept of the pullback is the ''pushout''. Universal property Explicitly, a pullback of the morphisms and consists of an object and two morphisms and for which the diagram : commutes. Moreover, the pullback must be universal wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fiber Product
In category theory, a branch of mathematics, a pullback (also called a fiber product, fibre product, fibered product or Cartesian square) is the limit of a diagram consisting of two morphisms and with a common codomain. The pullback is often written : and comes equipped with two natural morphisms and . The pullback of two morphisms and need not exist, but if it does, it is essentially uniquely defined by the two morphisms. In many situations, may intuitively be thought of as consisting of pairs of elements with in , in , and . For the general definition, a universal property is used, which essentially expresses the fact that the pullback is the "most general" way to complete the two given morphisms to a commutative square. The dual concept of the pullback is the ''pushout''. Universal property Explicitly, a pullback of the morphisms and consists of an object and two morphisms and for which the diagram : commutes. Moreover, the pullback must be universal wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pullback (differential Geometry)
Suppose that is a smooth map between smooth manifolds ''M'' and ''N''. Then there is an associated linear map from the space of 1-forms on ''N'' (the linear space of sections of the cotangent bundle) to the space of 1-forms on ''M''. This linear map is known as the pullback (by ''φ''), and is frequently denoted by ''φ''∗. More generally, any covariant tensor field – in particular any differential form – on ''N'' may be pulled back to ''M'' using ''φ''. When the map ''φ'' is a diffeomorphism, then the pullback, together with the pushforward, can be used to transform any tensor field from ''N'' to ''M'' or vice versa. In particular, if ''φ'' is a diffeomorphism between open subsets of R''n'' and R''n'', viewed as a change of coordinates (perhaps between different charts on a manifold ''M''), then the pullback and pushforward describe the transformation properties of covariant and contravariant tensors used in more traditional (coordinate dependent) approaches ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Differential Forms
In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics. For instance, the expression is an example of a -form, and can be integrated over an interval contained in the domain of : :\int_a^b f(x)\,dx. Similarly, the expression is a -form that can be integrated over a surface : :\int_S (f(x,y,z)\,dx\wedge dy + g(x,y,z)\,dz\wedge dx + h(x,y,z)\,dy\wedge dz). The symbol denotes the exterior product, sometimes called the ''wedge product'', of two differential forms. Likewise, a -form represents a volume element that can be integrated over a region of space. In general, a -form is an object that may be integrated over a -dimensional manifold, and is homogeneous of degree in the coordinate differentials dx, dy, \ldots. On an -dimensional manifold, t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pullback Bundle
In mathematics, a pullback bundle or induced bundle is the fiber bundle that is induced by a map of its base-space. Given a fiber bundle and a continuous map one can define a "pullback" of by as a bundle over . The fiber of over a point in is just the fiber of over . Thus is the disjoint union of all these fibers equipped with a suitable topology. Formal definition Let be a fiber bundle with abstract fiber and let be a continuous map. Define the pullback bundle by :f^E = \\subseteq B'\times E and equip it with the subspace topology and the projection map given by the projection onto the first factor, i.e., :\pi'(b',e) = b'.\, The projection onto the second factor gives a map :h \colon f^E \to E such that the following diagram commutes: :\begin f^E & \stackrel & E\\ ' \downarrow & & \downarrow \pi\\ B' & \stackrel f & B \end If is a local trivialization of then is a local trivialization of where :\psi(b',e) = (b', \mbox_2(\varphi(e))).\, It then fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Pullback (cohomology)
In algebraic topology, given a continuous map ''f'': ''X'' → ''Y'' of topological space In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called po ...s and a ring ''R'', the pullback along ''f'' on cohomology theory is a grade-preserving ''R''-algebra homomorphism: :f^*: H^*(Y; R) \to H^*(X; R) from the cohomology ring of ''Y'' with coefficients in ''R'' to that of ''X''. The use of the superscript is meant to indicate its contravariant nature: it reverses the direction of the map. For example, if ''X'', ''Y'' are manifolds, ''R'' the field of real numbers, and the cohomology is de Rham cohomology, then the pullback is induced by the pullback of differential forms. The homotopy invariance of cohomology states that if two maps ''f'', ''g'': ''X'' → ''Y'' are homotopic to each other, then th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inverse Image Sheaf
In mathematics, specifically in algebraic topology and algebraic geometry, an inverse image functor is a contravariant construction of sheaves; here “contravariant” in the sense given a map f : X \to Y, the inverse image functor is a functor from the category of sheaves on ''Y'' to the category of sheaves on ''X''. The direct image functor is the primary operation on sheaves, with the simplest definition. The inverse image exhibits some relatively subtle features. Definition Suppose we are given a sheaf \mathcal on Y and that we want to transport \mathcal to X using a continuous map f\colon X\to Y. We will call the result the ''inverse image'' or pullback sheaf f^\mathcal. If we try to imitate the direct image by setting :f^\mathcal(U) = \mathcal(f(U)) for each open set U of X, we immediately run into a problem: f(U) is not necessarily open. The best we could do is to approximate it by open sets, and even then we will get a presheaf and not a sheaf. Consequently, we de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

De Rham Cohomology
In mathematics, de Rham cohomology (named after Georges de Rham) is a tool belonging both to algebraic topology and to differential topology, capable of expressing basic topological information about smooth manifolds in a form particularly adapted to computation and the concrete representation of cohomology classes. It is a cohomology theory based on the existence of differential forms with prescribed properties. On any smooth manifold, every exact form is closed, but the converse may fail to hold. Roughly speaking, this failure is related to the possible existence of "holes" in the manifold, and the de Rham cohomology groups comprise a set of topological invariants of smooth manifolds that precisely quantify this relationship. Definition The de Rham complex is the cochain complex of differential forms on some smooth manifold , with the exterior derivative as the differential: :0 \to \Omega^0(M)\ \stackrel\ \Omega^1(M)\ \stackrel\ \Omega^2(M)\ \stackrel\ \Omega^3(M) \to \cd ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pushforward (other)
The notion of pushforward in mathematics is "dual" to the notion of pullback, and can mean a number of different but closely related things. * Pushforward (differential), the differential of a smooth map between manifolds, and the "pushforward" operations it defines * Pushforward (homology), the map induced in homology by a continuous map between topological spaces * Pushforward measure, measure induced on the target measure space by a measurable function * Pushout (category theory), the categorical dual of pullback * Direct image sheaf, the pushforward of a sheaf by a map * Fiberwise integral, the direct image of a differential form or cohomology by a smooth map, defined by "integration on the fibres" * Transfer operator Transfer may refer to: Arts and media * ''Transfer'' (2010 film), a German science-fiction movie directed by Damir Lukacevic and starring Zana Marjanović * ''Transfer'' (1966 film), a short film * ''Transfer'' (journal), in management studies ..., the pushfo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fibred Category
Fibred categories (or fibered categories) are abstract entities in mathematics used to provide a general framework for descent theory. They formalise the various situations in geometry and algebra in which ''inverse images'' (or ''pull-backs'') of objects such as vector bundles can be defined. As an example, for each topological space there is the category of vector bundles on the space, and for every continuous map from a topological space ''X'' to another topological space ''Y'' is associated the pullback functor taking bundles on ''Y'' to bundles on ''X''. Fibred categories formalise the system consisting of these categories and inverse image functors. Similar setups appear in various guises in mathematics, in particular in algebraic geometry, which is the context in which fibred categories originally appeared. Fibered categories are used to define stacks, which are fibered categories (over a site) with "descent". Fibrations also play an important role in categorical semantics of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Transpose Of A Linear Map
In linear algebra, the transpose of a linear map between two vector spaces, defined over the same field, is an induced map between the dual spaces of the two vector spaces. The transpose or algebraic adjoint of a linear map is often used to study the original linear map. This concept is generalised by adjoint functors. Definition Let X^ denote the algebraic dual space of a vector space X. Let X and Y be vector spaces over the same field \mathcal. If u : X \to Y is a linear map, then its algebraic adjoint or dual, is the map ^ u : Y^ \to X^ defined by f \mapsto f \circ u. The resulting functional ^ u(f) := f \circ u is called the pullback of f by u. The continuous dual space of a topological vector space (TVS) X is denoted by X^. If X and Y are TVSs then a linear map u : X \to Y is weakly continuous if and only if ^ u\left(Y^\right) \subseteq X^, in which case we let ^t u : Y^ \to X^ denote the restriction of ^ u to Y^. The map ^t u is called the transpose or algebraic ad ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transfer Operator
Transfer may refer to: Arts and media * ''Transfer'' (2010 film), a German science-fiction movie directed by Damir Lukacevic and starring Zana Marjanović * ''Transfer'' (1966 film), a short film * ''Transfer'' (journal), in management studies * "The Transfer" (''Smash''), a television episode *''The Transfer'', a novel by Silvano Ceccherini Finance * Transfer payment, a redistribution of income and wealth by means of the government making a payment * Balance transfer, transfer of the balance (either of money or credit) in an account to another account * Money transfer (other) ** Wire transfer, an international expedited bank-to-bank funds transfer Science and technology Learning and psychology * Transfer (propaganda), a method of psychological manipulation * Knowledge transfer, within organizations * Language transfer, in which native-language grammar and pronunciation influence the learning and use of a second language * Transfer of learning, in education Mathematic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]