Pullback
   HOME





Pullback
In mathematics, a pullback is either of two different, but related processes: precomposition and fiber-product. Its dual is a pushforward. Precomposition Precomposition with a function probably provides the most elementary notion of pullback: in simple terms, a function f of a variable y, where y itself is a function of another variable x, may be written as a function of x. This is the pullback of f by the function y. f(y(x)) \equiv g(x) It is such a fundamental process that it is often passed over without mention. However, it is not just functions that can be "pulled back" in this sense. Pullbacks can be applied to many other objects such as differential forms and their cohomology classes; see * Pullback (differential geometry) * Pullback (cohomology) Fiber-product The pullback bundle is an example that bridges the notion of a pullback as precomposition, and the notion of a pullback as a Cartesian square. In that example, the base space of a fiber bundle is pulled b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pullback (differential Geometry)
Let \phi:M\to N be a smooth map between smooth manifolds M and N. Then there is an associated linear map from the space of 1-forms on N (the linear space of sections of the cotangent bundle) to the space of 1-forms on M. This linear map is known as the pullback (by \phi), and is frequently denoted by \phi^*. More generally, any covariant tensor field – in particular any differential form – on N may be pulled back to M using \phi. When the map \phi is a diffeomorphism, then the pullback, together with the pushforward, can be used to transform any tensor field from N to M or vice versa. In particular, if \phi is a diffeomorphism between open subsets of \R^n and \R^n, viewed as a change of coordinates (perhaps between different charts on a manifold M), then the pullback and pushforward describe the transformation properties of covariant and contravariant tensors used in more traditional (coordinate dependent) approaches to the subject. The idea behind the pullba ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pullback (category Theory)
In category theory, a branch of mathematics, a pullback (also called a fiber product, fibre product, fibered product or Cartesian square) is the limit (category theory), limit of a diagram (category theory), diagram consisting of two morphisms and with a common codomain. The pullback is written :. Usually the morphisms and are omitted from the notation, and then the pullback is written :. The pullback comes equipped with two natural morphisms and . The pullback of two morphisms and need not exist, but if it does, it is essentially uniquely defined by the two morphisms. In many situations, may intuitively be thought of as consisting of pairs of elements with in , in , and . For the general definition, a universal property is used, which essentially expresses the fact that the pullback is the "most general" way to complete the two given morphisms to a commutative diagram, commutative square. The Dual (category theory), dual concept of the pullback is the ''Pushout ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fiber Product
In category theory, a branch of mathematics, a pullback (also called a fiber product, fibre product, fibered product or Cartesian square) is the limit of a diagram consisting of two morphisms and with a common codomain. The pullback is written :. Usually the morphisms and are omitted from the notation, and then the pullback is written :. The pullback comes equipped with two natural morphisms and . The pullback of two morphisms and need not exist, but if it does, it is essentially uniquely defined by the two morphisms. In many situations, may intuitively be thought of as consisting of pairs of elements with in , in , and . For the general definition, a universal property is used, which essentially expresses the fact that the pullback is the "most general" way to complete the two given morphisms to a commutative square. The dual concept of the pullback is the '' pushout''. Universal property Explicitly, a pullback of the morphisms f and g consists of an object ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Differential Forms
In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics. For instance, the expression f(x) \, dx is an example of a 1-form, -form, and can be integral, integrated over an interval [a,b] contained in the domain of f: \int_a^b f(x)\,dx. Similarly, the expression f(x,y,z) \, dx \wedge dy + g(x,y,z) \, dz \wedge dx + h(x,y,z) \, dy \wedge dz is a -form that can be integrated over a Surface (mathematics), surface S: \int_S \left(f(x,y,z) \, dx \wedge dy + g(x,y,z) \, dz \wedge dx + h(x,y,z) \, dy \wedge dz\right). The symbol \wedge denotes the exterior product, sometimes called the ''wedge product'', of two differential forms. Likewise, a -form f(x,y,z) \, dx \wedge dy \wedge dz represents a volume element that can be integrated over a region of space. I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Section (fiber Bundle)
In the mathematical field of topology, a section (or cross section) of a fiber bundle E is a continuous right inverse of the projection function \pi. In other words, if E is a fiber bundle over a base space, B: : \pi \colon E \to B then a section of that fiber bundle is a continuous map, : \sigma \colon B \to E such that : \pi(\sigma(x)) = x for all x \in B . A section is an abstract characterization of what it means to be a graph. The graph of a function g\colon B \to Y can be identified with a function taking its values in the Cartesian product E = B \times Y , of B and Y : :\sigma\colon B\to E, \quad \sigma(x) = (x,g(x)) \in E. Let \pi\colon E \to B be the projection onto the first factor: \pi(x,y) = x . Then a graph is any function \sigma for which \pi(\sigma(x)) = x . The language of fibre bundles allows this notion of a section to be generalized to the case when E is not necessarily a Cartesian product. If \pi\colon E \to B is a fibre bundle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fiber Bundle
In mathematics, and particularly topology, a fiber bundle ( ''Commonwealth English'': fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space E and a product space B \times F is defined using a continuous surjective map, \pi : E \to B, that in small regions of E behaves just like a projection from corresponding regions of B \times F to B. The map \pi, called the projection or submersion of the bundle, is regarded as part of the structure of the bundle. The space E is known as the total space of the fiber bundle, B as the base space, and F the fiber. In the '' trivial'' case, E is just B \times F, and the map \pi is just the projection from the product space to the first factor. This is called a trivial bundle. Examples of non-trivial fiber bundles include the Möbius strip and Klein bottle, as well as nontrivial covering spaces. Fiber bundles, such as the tangent bundle of a manifol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transfer Operator
In mathematics, the transfer operator encodes information about an iterated map and is frequently used to study the behavior of dynamical systems, statistical mechanics, quantum chaos and fractals. In all usual cases, the largest eigenvalue is 1, and the corresponding eigenvector is the invariant measure of the system. The transfer operator is sometimes called the Ruelle operator, after David Ruelle, or the Perron–Frobenius operator or Ruelle–Perron–Frobenius operator, in reference to the applicability of the Perron–Frobenius theorem to the determination of the eigenvalues of the operator. Definition The iterated function to be studied is a map f\colon X\rightarrow X for an arbitrary set X. The transfer operator is defined as an operator \mathcal acting on the space of functions \ as :(\mathcal\Phi)(x) = \sum_ g(y) \Phi(y) where g\colon X\rightarrow\mathbb is an auxiliary valuation function. When f has a Jacobian determinant , J, , then g is usually taken ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, Inner product space#Definition, inner product, Norm (mathematics)#Definition, norm, or Topological space#Definitions, topology) and the linear transformation, linear functions defined on these spaces and suitably respecting these structures. The historical roots of functional analysis lie in the study of function space, spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining, for example, continuous function, continuous or unitary operator, unitary operators between function spaces. This point of view turned out to be particularly useful for the study of differential equations, differential and integral equations. The usage of the word ''functional (mathematics), functional'' as a noun goes back to the calculus of v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Composition Operator
In mathematics, the composition operator C_\phi with symbol \phi is a linear operator defined by the rule C_\phi (f) = f \circ \phi where f \circ \phi denotes function composition. It is also encountered in composition of permutations in permutations groups. The study of composition operators is covered bAMS category 47B33 In physics In physics, and especially the area of dynamical systems, the composition operator is usually referred to as the Koopman operator (and its wild surge in popularity is sometimes jokingly called "Koopmania"), named after Bernard Koopman. It is the left-adjoint of the transfer operator of Frobenius–Perron. In Borel functional calculus Using the language of category theory, the composition operator is a pull-back on the space of measurable functions; it is adjoint to the transfer operator in the same way that the pull-back is adjoint to the push-forward; the composition operator is the inverse image functor. Since the domain considered here is that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transpose Of A Linear Map
In linear algebra, the transpose of a linear map between two vector spaces, defined over the same Field (mathematics), field, is an induced map between the dual spaces of the two vector spaces. The transpose or algebraic adjoint of a linear map is often used to study the original linear map. This concept is generalised by adjoint functors. Definition Let X^ denote the algebraic dual space of a vector space X. Let X and Y be vector spaces over the same field \mathcal. If u : X \to Y is a linear map, then its algebraic adjoint or dual, is the map ^ u : Y^ \to X^ defined by f \mapsto f \circ u. The resulting functional ^ u(f) := f \circ u is called the pullback of f by u. The continuous dual space of a topological vector space (TVS) X is denoted by X^. If X and Y are TVSs then a linear map u : X \to Y is weakly continuous if and only if ^ u\left(Y^\right) \subseteq X^, in which case we let ^t u : Y^ \to X^ denote the restriction of ^ u to Y^. The map ^t u is called the tra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Operator
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism. If a linear map is a bijection then it is called a . In the case where V = W, a linear map is called a linear endomorphism. Sometimes the term refers to this case, but the term "linear operator" can have different meanings for different conventions: for example, it can be used to emphasize that V and W are real vector spaces (not necessarily with V = W), or it can be used to emphasize that V is a function space, which is a common convention in functional analysis. Sometimes the term ''linear function'' has the same meaning as ''linear map' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Function Space
In mathematics, a function space is a set of functions between two fixed sets. Often, the domain and/or codomain will have additional structure which is inherited by the function space. For example, the set of functions from any set into a vector space has a natural vector space structure given by pointwise addition and scalar multiplication. In other scenarios, the function space might inherit a topological or metric structure, hence the name function ''space''. In linear algebra Let be a field and let be any set. The functions → can be given the structure of a vector space over where the operations are defined pointwise, that is, for any , : → , any in , and any in , define \begin (f+g)(x) &= f(x)+g(x) \\ (c\cdot f)(x) &= c\cdot f(x) \end When the domain has additional structure, one might consider instead the subset (or subspace) of all such functions which respect that structure. For example, if and also itself are vector spaces over , the se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]