Prior-free Mechanism
A prior-free mechanism (PFM) is a mechanism in which the designer does not have any information on the agents' valuations, not even that they are random variables from some unknown probability distribution. A typical application is a seller who wants to sell some items to potential buyers. The seller wants to price the items in a way that will maximize his profit. The optimal prices depend on the amount that each buyer is willing to pay for each item. The seller does not know these amounts, and cannot even assume that the amounts are drawn from a probability distribution. The seller's goal is to design an auction that will produce a reasonable profit even in worst-case scenarios. PFMs should be contrasted with two other mechanism types: * Bayesian-optimal mechanisms (BOM) assume that the agents' valuations are drawn from a known probability distribution. The mechanism is tailored to the parameters of this distribution (e.g, its median or mean value). * Prior-independent mechanis ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mechanism Design
Mechanism design is a field in economics and game theory that takes an objectives-first approach to designing economic mechanisms or incentives, toward desired objectives, in strategic settings, where players act rationally. Because it starts at the end of the game, then goes backwards, it is also called reverse game theory. It has broad applications, from economics and politics in such fields as market design, auction theory and social choice theory to networked-systems (internet interdomain routing, sponsored search auctions). Mechanism design studies solution concepts for a class of private-information games. Leonid Hurwicz explains that 'in a design problem, the goal function is the main "given", while the mechanism is the unknown. Therefore, the design problem is the "inverse" of traditional economic theory, which is typically devoted to the analysis of the performance of a given mechanism.' So, two distinguishing features of these games are: * that a game "designer" choos ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Probability Distribution
In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of different possible outcomes for an experiment. It is a mathematical description of a random phenomenon in terms of its sample space and the probabilities of events (subsets of the sample space). For instance, if is used to denote the outcome of a coin toss ("the experiment"), then the probability distribution of would take the value 0.5 (1 in 2 or 1/2) for , and 0.5 for (assuming that the coin is fair). Examples of random phenomena include the weather conditions at some future date, the height of a randomly selected person, the fraction of male students in a school, the results of a survey to be conducted, etc. Introduction A probability distribution is a mathematical description of the probabilities of events, subsets of the sample space. The sample space, often denoted by \Omega, is the set of all possible outcomes of a random phe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bayesian-optimal Mechanism
A Bayesian-optimal mechanism (BOM) is a mechanism in which the designer does not know the valuations of the agents for whom the mechanism is designed, but the designer knows that they are random variables and knows the probability distribution of these variables. A typical application is a seller who wants to sell some items to potential buyers. The seller wants to price the items in a way that will maximize their profit. The optimal prices depend on the amount that each buyer is willing to pay for each item. The seller does not know these amounts, but assumes that they are drawn from a certain known probability distribution. The phrase "Bayesian optimal mechanism design" has the following meaning: * Bayesian means that we know the probability distribution from which the agents' valuations are drawn (in contrast to prior-free mechanism design, which do not assume any prior probability distribution). * Optimal means that we want to maximize the expected revenue of the auctioneer, wher ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prior-independent Mechanism
A Prior-independent mechanism (PIM) is a mechanism in which the designer knows that the agents' valuations are drawn from some probability distribution, but does not know the distribution. A typical application is a seller who wants to sell some items to potential buyers. The seller wants to price the items in a way that will maximize his profit. The optimal prices depend on the amount that each buyer is willing to pay for each item. The seller does not know these values, but he assumes that the values are random variables with some unknown probability distribution. A PIM usually involves a random sampling process. The seller samples some valuations from the unknown distribution, and based on the samples, constructs an auction that yields approximately-optimal profits. The major research question in PIM design is: what is the sample complexity of the mechanism? I.e, how many agents it needs to sample in order to attain a reasonable approximation of the optimal welfare? Single-it ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Statistics
Statistics (from German language, German: ''wikt:Statistik#German, Statistik'', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of statistical survey, surveys and experimental design, experiments.Dodge, Y. (2006) ''The Oxford Dictionary of Statistical Terms'', Oxford University Press. When census data cannot be collected, statisticians collect data by developing specific experiment designs and survey sample (statistics), samples. Representative sampling as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Empirical Distribution Function
In statistics, an empirical distribution function (commonly also called an empirical Cumulative Distribution Function, eCDF) is the distribution function associated with the empirical measure of a sample. This cumulative distribution function is a step function that jumps up by at each of the data points. Its value at any specified value of the measured variable is the fraction of observations of the measured variable that are less than or equal to the specified value. The empirical distribution function is an estimate of the cumulative distribution function that generated the points in the sample. It converges with probability 1 to that underlying distribution, according to the Glivenko–Cantelli theorem. A number of results exist to quantify the rate of convergence of the empirical distribution function to the underlying cumulative distribution function. Definition Let be independent, identically distributed real random variables with the common cumulative distribut ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bayesian-optimal Mechanism Design
A Bayesian-optimal mechanism (BOM) is a mechanism in which the designer does not know the valuations of the agents for whom the mechanism is designed, but the designer knows that they are random variables and knows the probability distribution of these variables. A typical application is a seller who wants to sell some items to potential buyers. The seller wants to price the items in a way that will maximize their profit. The optimal prices depend on the amount that each buyer is willing to pay for each item. The seller does not know these amounts, but assumes that they are drawn from a certain known probability distribution. The phrase "Bayesian optimal mechanism design" has the following meaning: * Bayesian means that we know the probability distribution from which the agents' valuations are drawn (in contrast to prior-free mechanism design, which do not assume any prior probability distribution). * Optimal means that we want to maximize the expected revenue of the auctioneer, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Truthful Mechanism
In game theory, an asymmetric game where players have private information is said to be strategy-proof or strategyproof (SP) if it is a weakly-dominant strategy for every player to reveal his/her private information, i.e. given no information about what the others do, you fare best or at least not worse by being truthful. SP is also called truthful or dominant-strategy-incentive-compatible (DSIC), to distinguish it from other kinds of incentive compatibility. An SP game is not always immune to collusion, but its robust variants are; with group strategyproofness no group of people can collude to misreport their preferences in a way that makes every member better off, and with strong group strategyproofness no group of people can collude to misreport their preferences in a way that makes at least one member of the group better off without making any of the remaining members worse off. Examples Typical examples of SP mechanisms are majority voting between two alternatives, second- ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Digital Goods Auction
In auction theory, a digital goods auction is an auction in which a seller has an unlimited supply of a certain item. A typical example is when a company sells a digital good, such as a movie. The company can create an unlimited number of copies of that movie in a negligible cost. The company's goal is to maximize its profit; to do this, it has to find the optimal price: if the price is too high, only few people will buy the item; if the price is too low, many people will buy but the total revenue will be low. The optimal price of the movie depends on the ''valuations'' of the potential consumers - how much each consumer is willing to pay to buy a movie. If the valuations of all potential consumers are known, then the company faces a simple optimization problem - selecting the price that maximizes the profit. For concreteness, suppose there is a set S of consumers and that they are ordered by their valuation, so that the consumer with the highest valuation (willing to pay the larg ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Random-sampling Mechanism
A random-sampling mechanism (RSM) is a truthful mechanism that uses sampling in order to achieve approximately-optimal gain in prior-free mechanisms and prior-independent mechanisms. Suppose we want to sell some items in an auction and achieve maximum profit. The crucial difficulty is that we do not know how much each buyer is willing to pay for an item. If we know, at least, that the valuations of the buyers are random variables with some known probability distribution, then we can use a Bayesian-optimal mechanism. But often we do not know the distribution. In this case, random-sampling mechanisms provide an alternative solution. RSM in large markets Market-halving scheme When the market is large, the following general scheme can be used: # The buyers are asked to reveal their valuations. # The buyers are split to two sub-markets, M_L ("left") and M_R ("right"), using simple random sampling: each buyer goes to one of the sides by tossing a fair coin. # In each sub-market M_s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
With High Probability
In mathematics, an event that occurs with high probability (often shortened to w.h.p. or WHP) is one whose probability depends on a certain number ''n'' and goes to 1 as ''n'' goes to infinity, i.e. the probability of the event occurring can be made as close to 1 as desired by making ''n'' big enough. Applications The term WHP is especially used in computer science, in the analysis of probabilistic algorithms. For example, consider a certain probabilistic algorithm on a graph with ''n'' nodes. If the probability that the algorithm returns the correct answer is 1-1/n, then when the number of nodes is very large, the algorithm is correct with a probability that is very near 1. This fact is expressed shortly by saying that the algorithm is correct WHP. Some examples where this term is used are: * Miller–Rabin primality test: a probabilistic algorithm for testing whether a given number ''n'' is prime or composite. If ''n'' is composite, the test will detect ''n'' as composite WHP. Th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Consensus Estimate
Consensus estimate is a technique for designing truthful mechanisms in a prior-free mechanism design setting. The technique was introduced for digital goods auctions and later extended to more general settings. Suppose there is a digital good that we want to sell to a group of buyers with unknown valuations. We want to determine the price that will bring us maximum profit. Suppose we have a function that, given the valuations of the buyers, tells us the maximum profit that we can make. We can use it in the following way: # Ask the buyers to tell their valuations. # Calculate R_ - the maximum profit possible given the valuations. # Calculate a price that guarantees that we get a profit of R_. Step 3 can be attained by a profit extraction mechanism, which is a truthful mechanism. However, in general the mechanism is not truthful, since the buyers can try to influence R_ by bidding strategically. To solve this problem, we can replace the exact R_ with an approximation - R_ - that, with ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |