HOME
*





Position Error
Position error is one of the errors affecting the systems in an aircraft for measuring airspeed and altitude. It is not practical or necessary for an aircraft to have an airspeed indicating system and an altitude indicating system that are exactly accurate. A small amount of error is tolerable. It is caused by the location of the static vent that supplies air pressure to the airspeed indicator and altimeter. Static system All aircraft are equipped with a small hole in the surface of the aircraft called the static port. The air pressure in the vicinity of the static port is conveyed by a conduit to the altimeter and the airspeed indicator. This static port and the conduit constitute the aircraft's static system. The objective of the static system is to sense the pressure of the air at the altitude at which the aircraft is flying. In an ideal static system the air pressure fed to the altimeter and airspeed indicator is equal to the pressure of the air at the altitude at which ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Airspeed
In aviation, airspeed is the speed of an aircraft relative to the air. Among the common conventions for qualifying airspeed are: * Indicated airspeed ("IAS"), what is read on an airspeed gauge connected to a Pitot-static system; * Calibrated airspeed ("CAS"), indicated airspeed adjusted for pitot system position and installation error; * Equivalent airspeed ("EAS"), calibrated airspeed adjusted for compressibility effects; * True airspeed ("TAS"), equivalent airspeed adjusted for air density, and is also the speed of the aircraft through the air in which it is flying. Calibrated airspeed is typically within a few knots of indicated airspeed, while equivalent airspeed decreases slightly from CAS as aircraft altitude increases or at high speeds. With EAS constant, true airspeed increases as aircraft altitude increases. This is because air density decreases with higher altitude. The measurement and indication of airspeed is ordinarily accomplished on board an aircraft by an air ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pitot Tube
A pitot ( ) tube (pitot probe) measures fluid flow velocity. It was invented by a French engineer, Henri Pitot, in the early 18th century, and was modified to its modern form in the mid-19th century by a French scientist, Henry Darcy. It is widely used to determine the airspeed of aircraft; the water speed of boats; and the flow velocity of liquids, air, and gases in industry. Theory of operation The basic pitot tube consists of a tube pointing directly into the fluid flow. As this tube contains fluid, a pressure can be measured; the moving fluid is brought to rest (stagnates) as there is no outlet to allow flow to continue. This pressure is the stagnation pressure of the fluid, also known as the total pressure or (particularly in aviation) the pitot pressure. The measured stagnation pressure cannot itself be used to determine the fluid flow velocity (airspeed in aviation). However, Bernoulli's equation states: :Stagnation pressure = static pressure + dynamic pressure Whi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Aircraft Instruments
Flight instruments are the instruments in the cockpit of an aircraft that provide the pilot with data about the flight situation of that aircraft, such as altitude, airspeed, vertical speed, heading and much more other crucial information in flight. They improve safety by allowing the pilot to fly the aircraft in level flight, and make turns, without a reference outside the aircraft such as the horizon. Visual flight rules (VFR) require an airspeed indicator, an altimeter, and a compass or other suitable magnetic direction indicator. Instrument flight rules (IFR) additionally require a gyroscopic pitch-bank (artificial horizon), direction (directional gyro) and rate of turn indicator, plus a slip-skid indicator, adjustable altimeter, and a clock. Flight into instrument meteorological conditions (IMC) require radio navigation instruments for precise takeoffs and landings. The term is sometimes used loosely as a synonym for cockpit instruments as a whole, in which context it ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reduced Vertical Separation Minima
Reduced vertical separation minimum (RVSM) is the reduction, from 2,000 feet to 1,000 feet, of the standard vertical separation required between aircraft flying between flight level 290 (29,000  ft) and flight level 410 (41,000 ft). Expressed in the International System of Units (SI), it is the reduction, from 600  m to 300 m, of required vertical separation of aircraft between altitudes 8,850  and 12,500 m. This reduction in vertical separation minimum therefore increases the number of aircraft that can fly in a particular volume of controlled airspace. Historical background In 1958 the standard vertical separation of aircraft in controlled airspace was set at 1,000 feet from ground level or sea level to flight level 290, and at 2,000 feet above flight level 290. The larger minimum separations at higher altitudes was necessary because the accuracy of altimeters, used to determine altitude by measuring air pressure, decreases with height. Efforts to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Global Positioning System
The Global Positioning System (GPS), originally Navstar GPS, is a satellite-based radionavigation system owned by the United States government and operated by the United States Space Force. It is one of the global navigation satellite systems (GNSS) that provides geolocation and time information to a GPS receiver anywhere on or near the Earth where there is an unobstructed line of sight to four or more GPS satellites. It does not require the user to transmit any data, and operates independently of any telephonic or Internet reception, though these technologies can enhance the usefulness of the GPS positioning information. It provides critical positioning capabilities to military, civil, and commercial users around the world. Although the United States government created, controls and maintains the GPS system, it is freely accessible to anyone with a GPS receiver. The GPS project was started by the U.S. Department of Defense in 1973. The first prototype spacecraft was lau ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Airspeed
In aviation, airspeed is the speed of an aircraft relative to the air. Among the common conventions for qualifying airspeed are: * Indicated airspeed ("IAS"), what is read on an airspeed gauge connected to a Pitot-static system; * Calibrated airspeed ("CAS"), indicated airspeed adjusted for pitot system position and installation error; * Equivalent airspeed ("EAS"), calibrated airspeed adjusted for compressibility effects; * True airspeed ("TAS"), equivalent airspeed adjusted for air density, and is also the speed of the aircraft through the air in which it is flying. Calibrated airspeed is typically within a few knots of indicated airspeed, while equivalent airspeed decreases slightly from CAS as aircraft altitude increases or at high speeds. With EAS constant, true airspeed increases as aircraft altitude increases. This is because air density decreases with higher altitude. The measurement and indication of airspeed is ordinarily accomplished on board an aircraft by an air ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Global Navigation Satellite System
A satellite navigation or satnav system is a system that uses satellites to provide autonomous geo-spatial positioning. It allows satellite navigation devices to determine their location (longitude, latitude, and altitude/elevation) to high precision (within a few centimetres to metres) using time signals transmitted along a line of sight by radio from satellites. The system can be used for providing position, navigation or for tracking the position of something fitted with a receiver (satellite tracking). The signals also allow the electronic receiver to calculate the current local time to a high precision, which allows time synchronisation. These uses are collectively known as Positioning, Navigation and Timing (PNT). One set of critical vulnerabilities in satellite communications are the signals that govern positioning, navigation and timing (PNT). Failure to properly secure these transmissions could not only disrupt satellite networks but wreak havoc on a host of dependent sy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Federal Aviation Regulations
The Federal Aviation Regulations (FARs) are rules prescribed by the Federal Aviation Administration (FAA) governing all aviation activities in the United States. The FARs comprise Title 14 of the Code of Federal Regulations (CFR). A wide variety of activities are regulated, such as aircraft design and maintenance, typical airline flights, pilot training activities, hot-air ballooning, lighter-than-air aircraft, man-made structure heights, obstruction lighting and marking, model rocket launches, commercial space operations, model aircraft operations, Unmanned Aircraft Systems (UAS) and kite flying. The rules are designed to promote safe aviation, protecting pilots, flight attendants, passengers and the general public from unnecessary risk. FAR vs. 14 CFR Since 1958, these rules have typically been referred to as "FARs", short for Federal Aviation Regulations. However, another set of regulations (Title 48) is titled "Federal Acquisitions Regulations", and this has led to confu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pitot-static System
A pitot-static system is a system of pressure-sensitive instruments that is most often used in aviation to determine an aircraft's airspeed, Mach number, altitude, and altitude trend. A pitot-static system generally consists of a pitot tube, a static port, and the pitot-static instruments. Other instruments that might be connected are air data computers, flight data recorders, altitude encoders, cabin pressurization controllers, and various airspeed switches. Errors in pitot-static system readings can be extremely dangerous as the information obtained from the pitot static system, such as altitude, is potentially safety-critical. Several commercial airline disasters have been traced to a failure of the pitot-static system. Pitot-static pressure The pitot-static system of instruments uses the principle of air pressure gradient. It works by measuring pressures or pressure differences and using these values to assess the speed and altitude. These pressures can be measured ei ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pitot Pressure
Pitot pressure is the pressure that is measured by a Pitot tube, an open-ended tube connected to a pressure-measuring device. For subsonic flow, pitot pressure is equal to the stagnation pressure (or total pressure) of the flow, and hence the term pitot pressure is often used interchangeably with these other terms. For supersonic flow, however, pitot pressure is the stagnation pressure of the flow behind the normal shock ahead of the pitot tube. Pitot pressure is named for Henri Pitot Henri Pitot (; May 3, 1695 – December 27, 1771) was a French hydraulic engineer and the inventor of the pitot tube. In a pitot tube, the height of the fluid column is proportional to the square of the velocity of the fluid at the depth of the ..., French scientist. References Pressure {{Measurement-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gravitational Energy
Gravitational energy or gravitational potential energy is the potential energy a massive object has in relation to another massive object due to gravity. It is the potential energy associated with the gravitational field, which is released (converted into kinetic energy) when the objects fall towards each other. Gravitational potential energy increases when two objects are brought further apart. For two pairwise interacting point particles, the gravitational potential energy U is given by U = -\frac, where M and m are the masses of the two particles, R is the distance between them, and G is the gravitational constant. Close to the Earth's surface, the gravitational field is approximately constant, and the gravitational potential energy of an object reduces to U = mgh where m is the object's mass, g = / is the gravity of Earth, and h is the height of the object's center of mass above a chosen reference level. Newtonian mechanics In classical mechanics, two or more masses alw ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Altitude
Altitude or height (also sometimes known as depth) is a distance measurement, usually in the vertical or "up" direction, between a reference datum and a point or object. The exact definition and reference datum varies according to the context (e.g., aviation, geometry, geographical survey, sport, or atmospheric pressure). Although the term ''altitude'' is commonly used to mean the height above sea level of a location, in geography the term elevation is often preferred for this usage. Vertical distance measurements in the "down" direction are commonly referred to as depth. In aviation In aviation, the term altitude can have several meanings, and is always qualified by explicitly adding a modifier (e.g. "true altitude"), or implicitly through the context of the communication. Parties exchanging altitude information must be clear which definition is being used. Aviation altitude is measured using either mean sea level (MSL) or local ground level (above ground level, or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]