HOME

TheInfoList



OR:

Gravitational energy or gravitational potential energy is the
potential energy In physics, potential energy is the energy held by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors. Common types of potential energy include the gravitational potentia ...
a
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different element ...
ive object has in relation to another massive object due to
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the str ...
. It is the potential energy associated with the gravitational field, which is released (converted into
kinetic energy In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its a ...
) when the objects fall towards each other. Gravitational potential energy increases when two objects are brought further apart. For two pairwise interacting point particles, the gravitational potential energy U is given by U = -\frac, where M and m are the masses of the two particles, R is the distance between them, and G is the gravitational constant. Close to the Earth's surface, the gravitational field is approximately constant, and the gravitational potential energy of an object reduces to U = mgh where m is the object's mass, g = / is the gravity of Earth, and h is the height of the object's center of mass above a chosen reference level.


Newtonian mechanics

In
classical mechanics Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical ...
, two or more
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different element ...
es always have a gravitational potential. Conservation of energy requires that this gravitational field energy is always negative, so that it is zero when the objects are infinitely far apart. The gravitational potential energy is the potential energy an object has because it is within a gravitational field. The force between a point mass, M, and another point mass, m, is given by
Newton's law of gravitation Newton's law of universal gravitation is usually stated as that every particle attracts every other particle in the universe with a force that is proportional to the product of their masses and inversely proportional to the square of the distan ...
: F = \frac To get the total work done by an external force to bring point mass m from infinity to the final distance R (for example the radius of Earth) of the two mass points, the force is integrated with respect to displacement: W = \int_\infty^R \frac dr = -\left . \frac \_^ Because \lim_ \frac = 0, the total work done on the object can be written as: In the common situation where a much smaller mass m is moving near the surface of a much larger object with mass M, the gravitational field is nearly constant and so the expression for gravitational energy can be considerably simplified. The change in potential energy moving from the surface (a distance R from the center) to a height h above the surface is \begin \Delta U &= \frac-\frac \\ &= \frac\left(1-\frac\right). \end If h/R is small, as it must be close to the surface where g is constant, then this expression can be simplified using the binomial approximation \frac \approx 1-\frac to \begin \Delta U &\approx \frac\left -\left(1-\frac\right)\right\\ \Delta U &\approx \frac\\ \Delta U &\approx m\left(\frac\right)h. \end As the gravitational field is g = GM / R^2, this reduces to \Delta U \approx mgh. Taking U = 0 at the surface (instead of at infinity), the familiar expression for gravitational potential energy emerges: U = mgh.


General relativity

In
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. ...
gravitational energy is extremely complex, and there is no single agreed upon definition of the concept. It is sometimes modelled via the Landau–Lifshitz pseudotensor Lev Davidovich Landau & Evgeny Mikhailovich Lifshitz, ''The Classical Theory of Fields'', (1951), Pergamon Press, that allows retention for the energy–momentum conservation laws of
classical mechanics Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical ...
. Addition of the matter stress–energy tensor to the Landau–Lifshitz pseudotensor results in a combined matter plus gravitational energy pseudotensor that has a vanishing 4- divergence in all frames—ensuring the conservation law. Some people object to this derivation on the grounds that pseudotensors are inappropriate in general relativity, but the divergence of the combined matter plus gravitational energy pseudotensor is a
tensor In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tens ...
.


See also

* Gravitational binding energy * Gravitational potential * Gravitational potential energy storage


References

{{Footer energy Forms of energy Gravity Conservation laws Tensors in general relativity Potentials