HOME
*





Poisson Algebra
In mathematics, a Poisson algebra is an associative algebra together with a Lie bracket that also satisfies Leibniz's law; that is, the bracket is also a derivation. Poisson algebras appear naturally in Hamiltonian mechanics, and are also central in the study of quantum groups. Manifolds with a Poisson algebra structure are known as Poisson manifolds, of which the symplectic manifolds and the Poisson–Lie groups are a special case. The algebra is named in honour of Siméon Denis Poisson. Definition A Poisson algebra is a vector space over a field ''K'' equipped with two bilinear products, ⋅ and , having the following properties: * The product ⋅ forms an associative ''K''-algebra. * The product , called the Poisson bracket, forms a Lie algebra, and so it is anti-symmetric, and obeys the Jacobi identity. * The Poisson bracket acts as a derivation of the associative product ⋅, so that for any three elements ''x'', ''y'' and ''z'' in the algebra, one has = ⋅ ''z'' + '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Derivation (abstract Algebra)
In mathematics, a derivation is a function on an algebra which generalizes certain features of the derivative operator. Specifically, given an algebra ''A'' over a ring or a field ''K'', a ''K''-derivation is a ''K''-linear map that satisfies Leibniz's law: : D(ab) = a D(b) + D(a) b. More generally, if ''M'' is an ''A''-bimodule, a ''K''-linear map that satisfies the Leibniz law is also called a derivation. The collection of all ''K''-derivations of ''A'' to itself is denoted by Der''K''(''A''). The collection of ''K''-derivations of ''A'' into an ''A''-module ''M'' is denoted by . Derivations occur in many different contexts in diverse areas of mathematics. The partial derivative with respect to a variable is an R-derivation on the algebra of real-valued differentiable functions on R''n''. The Lie derivative with respect to a vector field is an R-derivation on the algebra of differentiable functions on a differentiable manifold; more generally it is a derivation on the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Yvette Kosmann-Schwarzbach
Yvette Kosmann-Schwarzbach (born 30 April 1941) is a French mathematician and professor. She has been teaching mathematics at the Lille University of Science and Technology and at the École polytechnique since 1993. Kosmann-Schwarzbach obtained her doctoral degree in 1970 at the University of Paris under supervision of André Lichnerowicz on a dissertation titled ''Dérivées de Lie des spineurs'' (Lie derivatives of spinors). She is the author of over fifty articles on differential geometry, algebra and mathematical physics, as well as the co-editor of several books concerning the theory of integrable systems In mathematics, integrability is a property of certain dynamical systems. While there are several distinct formal definitions, informally speaking, an integrable system is a dynamical system with sufficiently many conserved quantities, or first i .... The Kosmann lift in differential geometry is named after her. Works * ''Groups and Symmetries: From Finite Groups to L ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kontsevich Quantization Formula
In mathematics, the Kontsevich quantization formula describes how to construct a generalized ★-product operator algebra from a given arbitrary finite-dimensional Poisson manifold. This operator algebra amounts to the deformation quantization of the corresponding Poisson algebra. It is due to Maxim Kontsevich. Deformation quantization of a Poisson algebra Given a Poisson algebra , a deformation quantization is an associative unital product \star on the algebra of formal power series in , subject to the following two axioms, :\begin f\star g &=fg+\mathcal(\hbar)\\ ,g&=f\star g-g\star f=i\hbar\+\mathcal(\hbar^2) \end If one were given a Poisson manifold , one could ask, in addition, that :f\star g=fg+\sum_^\infty \hbar^kB_k(f\otimes g), where the are linear bidifferential operators of degree at most . Two deformations are said to be equivalent iff they are related by a gauge transformation of the type, :\begin D: A \hbar\to A \hbar \\ \sum_^\infty \hbar^k f_k \mapsto \sum_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Moyal Bracket
In physics, the Moyal bracket is the suitably normalized antisymmetrization of the phase-space star product. The Moyal bracket was developed in about 1940 by José Enrique Moyal, but Moyal only succeeded in publishing his work in 1949 after a lengthy dispute with Paul Dirac. In the meantime this idea was independently introduced in 1946 by Hip Groenewold. Overview The Moyal bracket is a way of describing the commutator of observables in the phase space formulation of quantum mechanics when these observables are described as functions on phase space. It relies on schemes for identifying functions on phase space with quantum observables, the most famous of these schemes being the Wigner–Weyl transform. It underlies Moyal’s dynamical equation, an equivalent formulation of Heisenberg’s quantum equation of motion, thereby providing the quantum generalization of Hamilton’s equations. Mathematically, it is a deformation of the phase-space Poisson bracket (essential ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Antibracket Algebra
In mathematics and theoretical physics, a Gerstenhaber algebra (sometimes called an antibracket algebra or braid algebra) is an algebraic structure discovered by Murray Gerstenhaber (1963) that combines the structures of a supercommutative ring and a graded Lie superalgebra. It is used in the Batalin–Vilkovisky formalism. It appears also in the generalization of Hamiltonian formalism known as the De Donder–Weyl theory as the algebra of generalized Poisson brackets defined on differential forms. Definition A Gerstenhaber algebra is a graded-commutative algebra with a Lie bracket of degree −1 satisfying the Poisson identity. Everything is understood to satisfy the usual superalgebra sign conventions. More precisely, the algebra has two products, one written as ordinary multiplication and one written as and a Z-grading called degree (in theoretical physics sometimes called ghost number). The degree of an element ''a'' is denoted by , ''a'', . These satisfy the identities ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Poisson Superalgebra
In mathematics, a Poisson superalgebra is a Z2- graded generalization of a Poisson algebra. Specifically, a Poisson superalgebra is an (associative) superalgebra ''A'' with a Lie superbracket : cdot,\cdot: A\otimes A\to A such that (''A'', ·,· is a Lie superalgebra and the operator : ,\cdot: A\to A is a superderivation of ''A'': : ,yz= ,y + (-1)^y ,z\, A supercommutative Poisson algebra is one for which the (associative) product is supercommutative. This is one possible way of "super"izing the Poisson algebra. This gives the classical dynamics of fermion fields and classical spin-1/2 particles. The other is to define an antibracket algebra instead. This is used in the BRST and Batalin-Vilkovisky formalism. Examples * If ''A'' is any associative Z2 graded algebra, then, defining a new product ,.(which is called the super-commutator) by ,y=xy-(-1), x, , y, yx for any pure graded x, y turns ''A'' into a Poisson superalgebra. See also *Poisson supermanifold In differen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vertex Operator Algebra
In mathematics, a vertex operator algebra (VOA) is an algebraic structure that plays an important role in two-dimensional conformal field theory and string theory. In addition to physical applications, vertex operator algebras have proven useful in purely mathematical contexts such as monstrous moonshine and the geometric Langlands correspondence. The related notion of vertex algebra was introduced by Richard Borcherds in 1986, motivated by a construction of an infinite-dimensional Lie algebra due to Igor Frenkel. In the course of this construction, one employs a Fock space that admits an action of vertex operators attached to lattice vectors. Borcherds formulated the notion of vertex algebra by axiomatizing the relations between the lattice vertex operators, producing an algebraic structure that allows one to construct new Lie algebras by following Frenkel's method. The notion of vertex operator algebra was introduced as a modification of the notion of vertex algebra, by Fr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Direct Sum
The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently, but analogously, for different kinds of structures. To see how the direct sum is used in abstract algebra, consider a more elementary kind of structure, the abelian group. The direct sum of two abelian groups A and B is another abelian group A\oplus B consisting of the ordered pairs (a,b) where a \in A and b \in B. To add ordered pairs, we define the sum (a, b) + (c, d) to be (a + c, b + d); in other words addition is defined coordinate-wise. For example, the direct sum \Reals \oplus \Reals , where \Reals is real coordinate space, is the Cartesian plane, \R ^2 . A similar process can be used to form the direct sum of two vector spaces or two modules. We can also form direct sums with any finite number of summands, for example A \oplus B \oplus C, provided A, B, and C are the same kinds of algebraic structures (e.g., all abelian groups, or all vector spa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Disjoint Union
In mathematics, a disjoint union (or discriminated union) of a family of sets (A_i : i\in I) is a set A, often denoted by \bigsqcup_ A_i, with an injection of each A_i into A, such that the images of these injections form a partition of A (that is, each element of A belongs to exactly one of these images). A disjoint union of a family of pairwise disjoint sets is their union. In category theory, the disjoint union is the coproduct of the category of sets, and thus defined up to a bijection. In this context, the notation \coprod_ A_i is often used. The disjoint union of two sets A and B is written with infix notation as A \sqcup B. Some authors use the alternative notation A \uplus B or A \operatorname B (along with the corresponding \biguplus_ A_i or \operatorname_ A_i). A standard way for building the disjoint union is to define A as the set of ordered pairs (x, i) such that x \in A_i, and the injection A_i \to A as x \mapsto (x, i). Example Consider the sets A_0 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Universal Enveloping Algebra
In mathematics, the universal enveloping algebra of a Lie algebra is the unital associative algebra whose representations correspond precisely to the representations of that Lie algebra. Universal enveloping algebras are used in the representation theory of Lie groups and Lie algebras. For example, Verma modules can be constructed as quotients of the universal enveloping algebra. In addition, the enveloping algebra gives a precise definition for the Casimir operators. Because Casimir operators commute with all elements of a Lie algebra, they can be used to classify representations. The precise definition also allows the importation of Casimir operators into other areas of mathematics, specifically, those that have a differential algebra. They also play a central role in some recent developments in mathematics. In particular, their dual provides a commutative example of the objects studied in non-commutative geometry, the quantum groups. This dual can be shown, by the Gelfand–N ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tensor Algebra
In mathematics, the tensor algebra of a vector space ''V'', denoted ''T''(''V'') or ''T''(''V''), is the algebra of tensors on ''V'' (of any rank) with multiplication being the tensor product. It is the free algebra on ''V'', in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing ''V'', in the sense of the corresponding universal property (see below). The tensor algebra is important because many other algebras arise as quotient algebras of ''T''(''V''). These include the exterior algebra, the symmetric algebra, Clifford algebras, the Weyl algebra and universal enveloping algebras. The tensor algebra also has two coalgebra structures; one simple one, which does not make it a bialgebra, but does lead to the concept of a cofree coalgebra, and a more complicated one, which yields a bialgebra, and can be extended by giving an antipode to create a Hopf algebra structure. ''Note'': In this article, all a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]