HOME
*



picture info

Antibracket Algebra
In mathematics and theoretical physics, a Gerstenhaber algebra (sometimes called an antibracket algebra or braid algebra) is an algebraic structure discovered by Murray Gerstenhaber (1963) that combines the structures of a supercommutative ring and a graded Lie superalgebra. It is used in the Batalin–Vilkovisky formalism. It appears also in the generalization of Hamiltonian formalism known as the De Donder–Weyl theory as the algebra of generalized Poisson brackets defined on differential forms. Definition A Gerstenhaber algebra is a graded-commutative algebra with a Lie bracket of degree −1 satisfying the Poisson identity. Everything is understood to satisfy the usual superalgebra sign conventions. More precisely, the algebra has two products, one written as ordinary multiplication and one written as and a Z-grading called degree (in theoretical physics sometimes called ghost number). The degree of an element ''a'' is denoted by , ''a'', . These satisfy the identities ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hochschild Cohomology
In mathematics, Hochschild homology (and cohomology) is a homology theory for associative algebras over rings. There is also a theory for Hochschild homology of certain functors. Hochschild cohomology was introduced by for algebras over a field, and extended to algebras over more general rings by . Definition of Hochschild homology of algebras Let ''k'' be a field, ''A'' an associative ''k''-algebra, and ''M'' an ''A''-bimodule. The enveloping algebra of ''A'' is the tensor product A^e=A\otimes A^o of ''A'' with its opposite algebra. Bimodules over ''A'' are essentially the same as modules over the enveloping algebra of ''A'', so in particular ''A'' and ''M'' can be considered as ''Ae''-modules. defined the Hochschild homology and cohomology group of ''A'' with coefficients in ''M'' in terms of the Tor functor and Ext functor by : HH_n(A,M) = \operatorname_n^(A, M) : HH^n(A,M) = \operatorname^n_(A, M) Hochschild complex Let ''k'' be a ring, ''A'' an associative ''k''-algebra th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebras
In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear". The multiplication operation in an algebra may or may not be associative, leading to the notions of associative algebras and non-associative algebras. Given an integer ''n'', the ring of real square matrices of order ''n'' is an example of an associative algebra over the field of real numbers under matrix addition and matrix multiplication since matrix multiplication is associative. Three-dimensional Euclidean space with multiplication given by the vector cross product is an example of a nonassociative algebra over the field of real numbers since the vector cross product is nonassociative, satisfying the Jacobi identity inste ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Reports On Mathematical Physics
''Reports on Mathematical Physics'' () is a peer-reviewed scientific journal, started in 1970, which publishes papers in theoretical physics that present a rigorous mathematical approach to problems of quantum and classical mechanics, field theories, relativity and gravitation, statistical physics, and the mathematical foundations of physical theories. The editor-in-chief of this journal is Andrzej Jamiołkowski. The impact factor of this journal is 0.742 in 2020. The CiteScore of the journal is 1.6 in 2020. References External links The journal's homepageat Elsevier Elsevier () is a Dutch academic publishing company specializing in scientific, technical, and medical content. Its products include journals such as ''The Lancet'', ''Cell'', the ScienceDirect collection of electronic journals, '' Trends'', th ... Mathematics journals Publications established in 1970 Elsevier academic journals Physics journals {{math-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Communications In Mathematical Physics
''Communications in Mathematical Physics'' is a peer-reviewed academic journal published by Springer. The journal publishes papers in all fields of mathematical physics, but focuses particularly in analysis related to condensed matter physics, statistical mechanics and quantum field theory, and in operator algebras, quantum information and relativity. History Rudolf Haag conceived this journal with Res Jost, and Haag became the Founding Chief Editor. The first issue of ''Communications in Mathematical Physics'' appeared in 1965. Haag guided the journal for the next eight years. Then Klaus Hepp succeeded him for three years, followed by James Glimm, for another three years. Arthur Jaffe began as chief editor in 1979 and served for 21 years. Michael Aizenman became the fifth chief editor in the year 2000 and served in this role until 2012. The current editor-in-chief is Horng-Tzer Yau. Archives Articles from 1965 to 1997 are available in electronic form free of charge, via Pro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Annals Of Mathematics
The ''Annals of Mathematics'' is a mathematical journal published every two months by Princeton University and the Institute for Advanced Study. History The journal was established as ''The Analyst'' in 1874 and with Joel E. Hendricks as the founding editor-in-chief. It was "intended to afford a medium for the presentation and analysis of any and all questions of interest or importance in pure and applied Mathematics, embracing especially all new and interesting discoveries in theoretical and practical astronomy, mechanical philosophy, and engineering". It was published in Des Moines, Iowa, and was the earliest American mathematics journal to be published continuously for more than a year or two. This incarnation of the journal ceased publication after its tenth year, in 1883, giving as an explanation Hendricks' declining health, but Hendricks made arrangements to have it taken over by new management, and it was continued from March 1884 as the ''Annals of Mathematics''. The n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Schouten–Nijenhuis Bracket
In differential geometry, the Schouten–Nijenhuis bracket, also known as the Schouten bracket, is a type of graded Lie bracket defined on multivector fields on a smooth manifold extending the Lie bracket of vector fields. There are two different versions, both rather confusingly called by the same name. The most common version is defined on alternating multivector fields and makes them into a Gerstenhaber algebra, but there is also another version defined on symmetric multivector fields, which is more or less the same as the Poisson bracket on the cotangent bundle. It was invented by Jan Arnoldus Schouten (1940, 1953) and its properties were investigated by his student Albert Nijenhuis (1955). It is related to but not the same as the Nijenhuis–Richardson bracket and the Frölicher–Nijenhuis bracket. Definition and properties An alternating multivector field is a section of the exterior algebra ∧∗T''M'' over the tangent bundle of a manifold ''M''. The alternating multi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Manifold
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a neighborhood that is homeomorphic to an open subset of n-dimensional Euclidean space. One-dimensional manifolds include lines and circles, but not lemniscates. Two-dimensional manifolds are also called surfaces. Examples include the plane, the sphere, and the torus, and also the Klein bottle and real projective plane. The concept of a manifold is central to many parts of geometry and modern mathematical physics because it allows complicated structures to be described in terms of well-understood topological properties of simpler spaces. Manifolds naturally arise as solution sets of systems of equations and as graphs of functions. The concept has applications in computer-graphics given the need to associate pictures with coordinates (e.g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Poisson Manifold
In differential geometry, a Poisson structure on a smooth manifold M is a Lie bracket \ (called a Poisson bracket in this special case) on the algebra (M) of smooth functions on M , subject to the Leibniz rule : \ = \h + g \ . Equivalently, \ defines a Lie algebra structure on the vector space (M) of smooth functions on M such that X_:= \: (M) \to (M) is a vector field for each smooth function f (making (M) into a Poisson algebra). Poisson structures on manifolds were introduced by André Lichnerowicz in 1977. They were further studied in the classical paper of Alan Weinstein, where many basic structure theorems were first proved, and which exerted a huge influence on the development of Poisson geometry — which today is deeply entangled with non-commutative geometry, integrable systems, topological field theories and representation theory, to name a few. Poisson structures are named after the French mathematician Siméon Denis Poisson, due to their ea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exterior Algebra
In mathematics, the exterior algebra, or Grassmann algebra, named after Hermann Grassmann, is an algebra that uses the exterior product or wedge product as its multiplication. In mathematics, the exterior product or wedge product of vectors is an algebraic construction used in geometry to study areas, volumes, and their higher-dimensional analogues. The exterior product of two vectors u and  v, denoted by u \wedge v, is called a bivector and lives in a space called the ''exterior square'', a vector space that is distinct from the original space of vectors. The magnitude of u \wedge v can be interpreted as the area of the parallelogram with sides u and  v, which in three dimensions can also be computed using the cross product of the two vectors. More generally, all parallel plane surfaces with the same orientation and area have the same bivector as a measure of their oriented area. Like the cross product, the exterior product is anticommutative, meaning t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Poisson Superalgebra
In mathematics, a Poisson superalgebra is a Z2- graded generalization of a Poisson algebra. Specifically, a Poisson superalgebra is an (associative) superalgebra ''A'' with a Lie superbracket : cdot,\cdot: A\otimes A\to A such that (''A'', ·,· is a Lie superalgebra and the operator : ,\cdot: A\to A is a superderivation of ''A'': : ,yz= ,y + (-1)^y ,z\, A supercommutative Poisson algebra is one for which the (associative) product is supercommutative. This is one possible way of "super"izing the Poisson algebra. This gives the classical dynamics of fermion fields and classical spin-1/2 particles. The other is to define an antibracket algebra instead. This is used in the BRST and Batalin-Vilkovisky formalism. Examples * If ''A'' is any associative Z2 graded algebra, then, defining a new product ,.(which is called the super-commutator) by ,y=xy-(-1), x, , y, yx for any pure graded x, y turns ''A'' into a Poisson superalgebra. See also *Poisson supermanifold In differen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]