HOME
*



picture info

Periodic Points Of Complex Quadratic Mappings
This article describes periodic points of some complex quadratic maps. A map is a formula for computing a value of a variable based on its own previous value or values; a quadratic map is one that involves the previous value raised to the powers one and two; and a complex map is one in which the variable and the parameters are complex numbers. A periodic point of a map is a value of the variable that occurs repeatedly after intervals of a fixed length. These periodic points play a role in the theories of Fatou and Julia sets. Definitions Let :f_c(z) = z^2+c\, be the complex quadric mapping, where z and c are complex numbers. Notationally, f^ _c (z) is the k-fold composition of f_c with itself (not to be confused with the kth derivative of f_c)—that is, the value after the ''k''-th iteration of the function f _c. Thus :f^ _c (z) = f_c(f^ _c (z)). Periodic points of a complex quadratic mapping of period p are points z of the dynamical plane such that :f^ _c (z) = z, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complex Quadratic Polynomial
A complex quadratic polynomial is a quadratic polynomial whose coefficients and variable are complex numbers. Properties Quadratic polynomials have the following properties, regardless of the form: *It is a unicritical polynomial, i.e. it has one finite critical point in the complex plane, Dynamical plane consist of maximally 2 basins: basin of infinity and basin of finite critical point ( if finite critical point do not escapes) *It can be postcritically finite, i.e. the orbit of the critical point can be finite, because the critical point is periodic or preperiodic. * It is a unimodal function, * It is a rational function, * It is an entire function. Forms When the quadratic polynomial has only one variable (univariate), one can distinguish its four main forms: * The general form: f(x) = a_2 x^2 + a_1 x + a_0 where a_2 \ne 0 * The factored form used for the logistic map: f_r(x) = r x (1-x) * f_(x) = x^2 +\lambda x which has an indifferent fixed point with multiplier \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complex Quadratic Polynomial
A complex quadratic polynomial is a quadratic polynomial whose coefficients and variable are complex numbers. Properties Quadratic polynomials have the following properties, regardless of the form: *It is a unicritical polynomial, i.e. it has one finite critical point in the complex plane, Dynamical plane consist of maximally 2 basins: basin of infinity and basin of finite critical point ( if finite critical point do not escapes) *It can be postcritically finite, i.e. the orbit of the critical point can be finite, because the critical point is periodic or preperiodic. * It is a unimodal function, * It is a rational function, * It is an entire function. Forms When the quadratic polynomial has only one variable (univariate), one can distinguish its four main forms: * The general form: f(x) = a_2 x^2 + a_1 x + a_0 where a_2 \ne 0 * The factored form used for the logistic map: f_r(x) = r x (1-x) * f_(x) = x^2 +\lambda x which has an indifferent fixed point with multiplier \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Complex Quadratic Polynomial
A complex quadratic polynomial is a quadratic polynomial whose coefficients and variable are complex numbers. Properties Quadratic polynomials have the following properties, regardless of the form: *It is a unicritical polynomial, i.e. it has one finite critical point in the complex plane, Dynamical plane consist of maximally 2 basins: basin of infinity and basin of finite critical point ( if finite critical point do not escapes) *It can be postcritically finite, i.e. the orbit of the critical point can be finite, because the critical point is periodic or preperiodic. * It is a unimodal function, * It is a rational function, * It is an entire function. Forms When the quadratic polynomial has only one variable (univariate), one can distinguish its four main forms: * The general form: f(x) = a_2 x^2 + a_1 x + a_0 where a_2 \ne 0 * The factored form used for the logistic map: f_r(x) = r x (1-x) * f_(x) = x^2 +\lambda x which has an indifferent fixed point with multiplier \ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Periodic Point
In mathematics, in the study of iterated functions and dynamical systems, a periodic point of a function is a point which the system returns to after a certain number of function iterations or a certain amount of time. Iterated functions Given a mapping ''f'' from a set ''X'' into itself, :f: X \to X, a point ''x'' in ''X'' is called periodic point if there exists an ''n'' so that :\ f_n(x) = x where f_n is the ''n''th iterate of ''f''. The smallest positive integer ''n'' satisfying the above is called the ''prime period'' or ''least period'' of the point ''x''. If every point in ''X'' is a periodic point with the same period ''n'', then ''f'' is called ''periodic'' with period ''n'' (this is not to be confused with the notion of a periodic function). If there exist distinct ''n'' and ''m'' such that :f_n(x) = f_m(x) then ''x'' is called a preperiodic point. All periodic points are preperiodic. If ''f'' is a diffeomorphism of a differentiable manifold, so that the derivative f_n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Julia0bb
Julia is usually a feminine given name. It is a Latinate feminine form of the name Julio and Julius. (For further details on etymology, see the Wiktionary entry "Julius".) The given name ''Julia'' had been in use throughout Late Antiquity (e.g. Julia of Corsica) but became rare during the Middle Ages, and was revived only with the Italian Renaissance. It became common in the English-speaking world only in the 18th century. Today, it is frequently used throughout the world. Statistics Julia was the 10th most popular name for girls born in the United States in 2007 and the 88th most popular name for women in the 1990 census there. It has been among the top 150 names given to girls in the United States for the past 100 years. It was the 89th most popular name for girls born in England and Wales in 2007; the 94th most popular name for girls born in Scotland in 2007; the 13th most popular name for girls born in Spain in 2006; the 5th most popular name for girls born in Sweden ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fixed
Fixed may refer to: * ''Fixed'' (EP), EP by Nine Inch Nails * ''Fixed'', an upcoming 2D adult animated film directed by Genndy Tartakovsky * Fixed (typeface), a collection of monospace bitmap fonts that is distributed with the X Window System * Fixed, subjected to neutering * Fixed point (mathematics), a point that is mapped to itself by the function * Fixed line telephone, landline See also * * * Fix (other) * Fixer (other) * Fixing (other) * Fixture (other) {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quadratic Formula
In elementary algebra, the quadratic formula is a formula that provides the solution(s) to a quadratic equation. There are other ways of solving a quadratic equation instead of using the quadratic formula, such as factoring (direct factoring, grouping, AC method), completing the square, graphing and others. Given a general quadratic equation of the form :ax^2+bx+c=0 with representing an unknown, with , and representing constants, and with , the quadratic formula is: :x = \frac where the plus–minus symbol "±" indicates that the quadratic equation has two solutions. Written separately, they become: : x_1=\frac\quad\text\quad x_2=\frac Each of these two solutions is also called a root (or zero) of the quadratic equation. Geometrically, these roots represent the -values at which ''any'' parabola, explicitly given as , crosses the -axis. As well as being a formula that yields the zeros of any parabola, the quadratic formula can also be used to identify the axis of s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quadratic Equation
In algebra, a quadratic equation () is any equation that can be rearranged in standard form as ax^2 + bx + c = 0\,, where represents an unknown (mathematics), unknown value, and , , and represent known numbers, where . (If and then the equation is linear equation, linear, not quadratic.) The numbers , , and are the ''coefficients'' of the equation and may be distinguished by respectively calling them, the ''quadratic coefficient'', the ''linear coefficient'' and the ''constant'' or ''free term''. The values of that satisfy the equation are called ''solution (mathematics), solutions'' of the equation, and ''zero of a function, roots'' or ''zero of a function, zeros'' of the Expression (mathematics), expression on its left-hand side. A quadratic equation has at most two solutions. If there is only one solution, one says that it is a double root. If all the coefficients are real numbers, there are either two real solutions, or a single real double root, or two complex number, c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Classification Of Fatou Components
In mathematics, Fatou components are components of the Fatou set. They were named after Pierre Fatou. Rational case If f is a rational function :f = \frac defined in the extended complex plane, and if it is a nonlinear function (degree > 1) : d(f) = \max(\deg(P),\, \deg(Q))\geq 2, then for a periodic component U of the Fatou set, exactly one of the following holds: # U contains an attracting periodic point # U is parabolic # U is a Siegel disc: a simply connected Fatou component on which ''f''(''z'') is analytically conjugate to a Euclidean rotation of the unit disc onto itself by an irrational rotation angle. # U is a Herman ring: a double connected Fatou component (an annulus) on which ''f''(''z'') is analytically conjugate to a Euclidean rotation of a round annulus, again by an irrational rotation angle. File:Julia-set_N_z3-1.png, Julia set (white) and Fatou set (dark red/green/blue) for f: z\mapsto z-\frac(z) with g: z \mapsto z^3-1 in the complex plane. Basilica Juli ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Siegel Disc
Siegel disc is a connected component in the Fatou set where the dynamics is analytically conjugate to an irrational rotation. Description Given a holomorphic endomorphism f:S\to S on a Riemann surface S we consider the dynamical system generated by the iterates of f denoted by f^n=f\circ\stackrel\circ f. We then call the orbit \mathcal^+(z_0) of z_0 as the set of forward iterates of z_0. We are interested in the asymptotic behavior of the orbits in S (which will usually be \mathbb, the complex plane or \mathbb=\mathbb\cup\, the Riemann sphere), and we call S the phase plane or ''dynamical plane''. One possible asymptotic behavior for a point z_0 is to be a fixed point, or in general a ''periodic point''. In this last case f^p(z_0)=z_0 where p is the period and p=1 means z_0 is a fixed point. We can then define the ''multiplier'' of the orbit as \rho=(f^p)'(z_0) and this enables us to classify periodic orbits as ''attracting'' if , \rho, 1 and indifferent if \rho=1. Indifferent ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Root Of Unity
In mathematics, a root of unity, occasionally called a Abraham de Moivre, de Moivre number, is any complex number that yields 1 when exponentiation, raised to some positive integer power . Roots of unity are used in many branches of mathematics, and are especially important in number theory, the theory of group characters, and the discrete Fourier transform. Roots of unity can be defined in any field (mathematics), field. If the characteristic of a field, characteristic of the field is zero, the roots are complex numbers that are also algebraic integers. For fields with a positive characteristic, the roots belong to a finite field, and, converse (logic), conversely, every nonzero element of a finite field is a root of unity. Any algebraically closed field contains exactly th roots of unity, except when is a multiple of the (positive) characteristic of the field. General definition An ''th root of unity'', where is a positive integer, is a number satisfying the equation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]