HOME
*



picture info

Penteract
In five-dimensional geometry, a 5-cube is a name for a five-dimensional hypercube with 32 vertices, 80 edges, 80 square faces, 40 cubic cells, and 10 tesseract 4-faces. It is represented by Schläfli symbol or , constructed as 3 tesseracts, , around each cubic ridge. It can be called a penteract, a portmanteau of the Greek word , for 'five' (dimensions), and the word ''tesseract'' (the 4-cube). It can also be called a regular deca-5-tope or decateron, being a 5-dimensional polytope constructed from 10 regular facets. Related polytopes It is a part of an infinite hypercube family. The dual of a 5-cube is the 5-orthoplex, of the infinite family of orthoplexes. Applying an '' alternation'' operation, deleting alternating vertices of the 5-cube, creates another uniform 5-polytope, called a 5-demicube, which is also part of an infinite family called the demihypercubes. The 5-cube can be seen as an ''order-3 tesseractic honeycomb'' on a 4-sphere. It is related to the Euclidean 4- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Uniform 5-polytope
In geometry, a uniform 5-polytope is a five-dimensional uniform polytope. By definition, a uniform 5-polytope is vertex-transitive and constructed from uniform 4-polytope Facet (geometry), facets. The complete set of convex uniform 5-polytopes has not been determined, but many can be made as Wythoff constructions from a small set of Coxeter groups, symmetry groups. These construction operations are represented by the permutations of rings of the Coxeter diagrams. History of discovery *Regular polytopes: (convex faces) **1852: Ludwig Schläfli proved in his manuscript ''Theorie der vielfachen Kontinuität'' that there are exactly 3 regular polytopes in 5 or more dimensions. *Convex semiregular polytopes: (Various definitions before Coxeter's uniform category) **1900: Thorold Gosset enumerated the list of nonprismatic semiregular convex polytopes with regular facets (convex regular 4-polytopes) in his publication ''On the Regular and Semi-Regular Figures in Space of n Dimension ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

5-demicube
In five-dimensional geometry, a demipenteract or 5-demicube is a semiregular 5-polytope, constructed from a ''5-hypercube'' (penteract) with alternated vertices removed. It was discovered by Thorold Gosset. Since it was the only semiregular 5-polytope (made of more than one type of regular facets), he called it a 5-ic semi-regular. E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as HM5 for a 5-dimensional ''half measure'' polytope. Coxeter named this polytope as 121 from its Coxeter diagram, which has branches of length 2, 1 and 1 with a ringed node on one of the short branches, and Schläfli symbol \left\ or . It exists in the k21 polytope family as 121 with the Gosset polytopes: 221, 321, and 421. The graph formed by the vertices and edges of the demipenteract is sometimes called the Clebsch graph, though that name sometimes refers to the folded cube graph of order five instead. Cartesian coordinates Cartesian coordinates for the vertices of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Demihypercube
In geometry, demihypercubes (also called ''n-demicubes'', ''n-hemicubes'', and ''half measure polytopes'') are a class of ''n''-polytopes constructed from alternation of an ''n''-hypercube, labeled as ''hγn'' for being ''half'' of the hypercube family, ''γn''. Half of the vertices are deleted and new facets are formed. The 2''n'' facets become 2''n'' (''n''−1)-demicubes, and 2''n'' (''n''−1)-simplex facets are formed in place of the deleted vertices. They have been named with a ''demi-'' prefix to each hypercube name: demicube, demitesseract, etc. The demicube is identical to the regular tetrahedron, and the demitesseract is identical to the regular 16-cell. The demipenteract is considered ''semiregular'' for having only regular facets. Higher forms don't have all regular facets but are all uniform polytopes. The vertices and edges of a demihypercube form two copies of the halved cube graph. An ''n''-demicube has inversion symmetry if ''n'' is even. Discovery ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

5-polytope
In geometry, a five-dimensional polytope (or 5-polytope) is a polytope in five-dimensional space, bounded by (4-polytope) facets, pairs of which share a polyhedral cell. Definition A 5-polytope is a closed five-dimensional figure with vertices, edges, faces, and cells, and 4-faces. A vertex is a point where five or more edges meet. An edge is a line segment where four or more faces meet, and a face is a polygon where three or more cells meet. A cell is a polyhedron, and a 4-face is a 4-polytope. Furthermore, the following requirements must be met: # Each cell must join exactly two 4-faces. # Adjacent 4-faces are not in the same four-dimensional hyperplane. # The figure is not a compound of other figures which meet the requirements. Characteristics The topology of any given 5-polytope is defined by its Betti numbers and torsion coefficients.Richeson, D.; ''Euler's Gem: The Polyhedron Formula and the Birth of Topoplogy'', Princeton, 2008. The value of the Euler characteristic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Alternation (geometry)
In geometry, an alternation or ''partial truncation'', is an operation on a polygon, polyhedron, tiling, or higher dimensional polytope that removes alternate vertices.Coxeter, Regular polytopes, pp. 154–156 8.6 Partial truncation, or alternation Coxeter labels an ''alternation'' by a prefixed ''h'', standing for ''hemi'' or ''half''. Because alternation reduces all polygon faces to half as many sides, it can only be applied to polytopes with all even-sided faces. An alternated square face becomes a digon, and being degenerate, is usually reduced to a single edge. More generally any vertex-uniform polyhedron or tiling with a vertex configuration consisting of all even-numbered elements can be ''alternated''. For example, the alternation of a vertex figure with ''2a.2b.2c'' is ''a.3.b.3.c.3'' where the three is the number of elements in this vertex figure. A special case is square faces whose order divides in half into degenerate digons. So for example, the cube ''4.4.4'' i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

5-orthoplex
In five-dimensional geometry, a 5-orthoplex, or 5-cross polytope, is a five-dimensional polytope with 10 vertices, 40 edges, 80 triangle faces, 80 tetrahedron cells, 32 5-cell 4-faces. It has two constructed forms, the first being regular with Schläfli symbol , and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol or Coxeter symbol 211. It is a part of an infinite family of polytopes, called cross-polytopes or ''orthoplexes''. The dual polytope is the 5-hypercube or 5-cube. Alternate names * pentacross, derived from combining the family name ''cross polytope'' with ''pente'' for five (dimensions) in Greek. * Triacontaditeron (or ''triacontakaiditeron'') - as a 32- facetted 5-polytope (polyteron). As a configuration This configuration matrix represents the 5-orthoplex. The rows and columns correspond to vertices, edges, faces, cells and 4-faces. The diagonal numbers say how many of each element occur in the whole 5-orthoplex. The nondi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tesseractic Honeycomb
In four-dimensional euclidean geometry, the tesseractic honeycomb is one of the three regular space-filling tessellations (or honeycombs), represented by Schläfli symbol , and constructed by a 4-dimensional packing of tesseract facets. Its vertex figure is a 16-cell. Two tesseracts meet at each cubic cell, four meet at each square face, eight meet on each edge, and sixteen meet at each vertex. It is an analog of the square tiling, , of the plane and the cubic honeycomb, , of 3-space. These are all part of the hypercubic honeycomb family of tessellations of the form . Tessellations in this family are Self-dual. Coordinates Vertices of this honeycomb can be positioned in 4-space in all integer coordinates (i,j,k,l). Sphere packing Like all regular hypercubic honeycombs, the tesseractic honeycomb corresponds to a sphere packing of edge-length-diameter spheres centered on each vertex, or (dually) inscribed in each cell instead. In the hypercubic honeycomb of 4 dimensions, verte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

5-cube T0 B3
In five-dimensional geometry, a 5-cube is a name for a five-dimensional hypercube with 32 vertices, 80 edges, 80 square faces, 40 cubic cells, and 10 tesseract 4-faces. It is represented by Schläfli symbol or , constructed as 3 tesseracts, , around each cubic ridge. It can be called a penteract, a portmanteau of the Greek word , for 'five' (dimensions), and the word ''tesseract'' (the 4-cube). It can also be called a regular deca-5-tope or decateron, being a 5-dimensional polytope constructed from 10 regular facets. Related polytopes It is a part of an infinite hypercube family. The dual of a 5-cube is the 5-orthoplex, of the infinite family of orthoplexes. Applying an '' alternation'' operation, deleting alternating vertices of the 5-cube, creates another uniform 5-polytope, called a 5-demicube, which is also part of an infinite family called the demihypercubes. The 5-cube can be seen as an ''order-3 tesseractic honeycomb'' on a 4-sphere. It is related to the Euclidean ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

5-cube T0
In five-dimensional geometry, a 5-cube is a name for a five-dimensional hypercube with 32 vertices, 80 edges, 80 square faces, 40 cubic cells, and 10 tesseract 4-faces. It is represented by Schläfli symbol or , constructed as 3 tesseracts, , around each cubic ridge. It can be called a penteract, a portmanteau of the Greek word , for 'five' (dimensions), and the word ''tesseract'' (the 4-cube). It can also be called a regular deca-5-tope or decateron, being a 5-dimensional polytope constructed from 10 regular facets. Related polytopes It is a part of an infinite hypercube family. The dual of a 5-cube is the 5-orthoplex, of the infinite family of orthoplexes. Applying an '' alternation'' operation, deleting alternating vertices of the 5-cube, creates another uniform 5-polytope, called a 5-demicube, which is also part of an infinite family called the demihypercubes. The 5-cube can be seen as an ''order-3 tesseractic honeycomb'' on a 4-sphere. It is related to the Euclide ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cartesian Coordinates
A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in the same unit of length. Each reference coordinate line is called a ''coordinate axis'' or just ''axis'' (plural ''axes'') of the system, and the point where they meet is its ''origin'', at ordered pair . The coordinates can also be defined as the positions of the perpendicular projections of the point onto the two axes, expressed as signed distances from the origin. One can use the same principle to specify the position of any point in three-dimensional space by three Cartesian coordinates, its signed distances to three mutually perpendicular planes (or, equivalently, by its perpendicular projection onto three mutually perpendicular lines). In general, ''n'' Cartesian coordinates (an element of real ''n''-space) specify the point in an ' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Order-5 Tesseractic Honeycomb
In the geometry of hyperbolic 4-space, the order-5 tesseractic honeycomb is one of five compact regular space-filling tessellations (or honeycombs). With Schläfli symbol , it has five 8-cells (also known as tesseracts) around each face. Its dual is the order-4 120-cell honeycomb, . Related polytopes and honeycombs It is related to the Euclidean 4-space (order-4) tesseractic honeycomb, , and the 5-cube, in Euclidean 5-space. The ''5-cube'' can also be seen as an ''order-3 tesseractic honeycomb'' on the surface of a 4-sphere. It is analogous to the order-5 cubic honeycomb and order-5 square tiling . See also * List of regular polytopes References *Coxeter, ''Regular Polytopes'', 3rd. ed., Dover Publications, 1973. . (Tables I and II: Regular polytopes and honeycombs, pp. 294–296) *Coxeter Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coxeter Plane
In mathematics, the Coxeter number ''h'' is the order of a Coxeter element of an irreducible Coxeter group. It is named after H.S.M. Coxeter. Definitions Note that this article assumes a finite Coxeter group. For infinite Coxeter groups, there are multiple conjugacy classes of Coxeter elements, and they have infinite order. There are many different ways to define the Coxeter number ''h'' of an irreducible root system. A Coxeter element is a product of all simple reflections. The product depends on the order in which they are taken, but different orderings produce conjugate elements, which have the same order. *The Coxeter number is the order of any Coxeter element;. *The Coxeter number is 2''m''/''n'', where ''n'' is the rank, and ''m'' is the number of reflections. In the crystallographic case, ''m'' is half the number of roots; and ''2m''+''n'' is the dimension of the corresponding semisimple Lie algebra. *If the highest root is Σ''m''iα''i'' for simple roots α''i'', th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]