In geometry, an alternation or ''partial truncation'', is an operation on a
polygon
In geometry, a polygon () is a plane figure that is described by a finite number of straight line segments connected to form a closed ''polygonal chain'' (or ''polygonal circuit''). The bounded plane region, the bounding circuit, or the two toge ...
,
polyhedron
In geometry, a polyhedron (plural polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices.
A convex polyhedron is the convex hull of finitely many points, not all on ...
,
tiling
Tiling may refer to:
*The physical act of laying tiles
* Tessellations
Computing
*The compiler optimization of loop tiling
*Tiled rendering, the process of subdividing an image by regular grid
*Tiling window manager
People
*Heinrich Sylvester T ...
, or higher dimensional
polytope
In elementary geometry, a polytope is a geometric object with flat sides ('' faces''). Polytopes are the generalization of three-dimensional polyhedra to any number of dimensions. Polytopes may exist in any general number of dimensions as an ...
that removes alternate vertices.
[Coxeter, Regular polytopes, pp. 154–156 8.6 Partial truncation, or alternation]
Coxeter labels an ''alternation'' by a prefixed ''h'', standing for ''hemi'' or ''half''. Because alternation reduces all polygon faces to half as many sides, it can only be applied to polytopes with all even-sided faces. An alternated square face becomes a
digon
In geometry, a digon is a polygon with two sides (edges) and two vertices. Its construction is degenerate in a Euclidean plane because either the two sides would coincide or one or both would have to be curved; however, it can be easily visu ...
, and being degenerate, is usually reduced to a single edge.
More generally any
vertex-uniform
In geometry, a polytope (e.g. a polygon or polyhedron) or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face in ...
polyhedron or tiling with a
consisting of all even-numbered elements can be ''alternated''. For example, the alternation of a vertex figure with ''2a.2b.2c'' is ''a.3.b.3.c.3'' where the three is the number of elements in this vertex figure. A special case is square faces whose order divides in half into degenerate
digon
In geometry, a digon is a polygon with two sides (edges) and two vertices. Its construction is degenerate in a Euclidean plane because either the two sides would coincide or one or both would have to be curved; however, it can be easily visu ...
s. So for example, the cube ''4.4.4'' is alternated as ''2.3.2.3.2.3'' which is reduced to 3.3.3, being the
tetrahedron
In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the o ...
, and all the 6 edges of the tetrahedra can also be seen as the degenerate faces of the original cube.
Snub
A snub (in
Coxeter's terminology) can be seen as an alternation of a
truncated regular or truncated
quasiregular polyhedron. In general a polyhedron can be snubbed if its truncation has only even-sided faces. All
truncated rectified polyhedra can be snubbed, not just from regular polyhedra.
The
snub square antiprism is an example of a general snub, and can be represented by ss, with the
square antiprism
In geometry, the square antiprism is the second in an infinite family of antiprisms formed by an even-numbered sequence of triangle sides closed by two polygon caps. It is also known as an ''anticube''.
If all its faces are regular, it is a sem ...
, s.
Alternated polytopes
This ''alternation'' operation applies to higher-dimensional polytopes and honeycombs as well, but in general most of the results of this operation will not be uniform. The voids created by the deleted vertices will not in general create uniform facets, and there are typically not enough degrees of freedom to allow an appropriate rescaling of the new edges. Exceptions do exist, however, such as the derivation of the
snub 24-cell
In geometry, the snub 24-cell or snub disicositetrachoron is a convex uniform 4-polytope composed of 120 regular tetrahedral and 24 icosahedral cells. Five tetrahedra and three icosahedra meet at each vertex. In total it has 480 triangular face ...
from the
truncated 24-cell
In geometry, a truncated 24-cell is a uniform 4-polytope (4-dimensional uniform polytope) formed as the truncation of the regular 24-cell.
There are two degrees of truncations, including a bitruncation.
Truncated 24-cell
The truncated 24- ...
.
Examples:
*
Honeycombs
*# An alternated
cubic honeycomb
The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation (or honeycomb) in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a r ...
is the
tetrahedral-octahedral honeycomb
The tetrahedral-octahedral honeycomb, alternated cubic honeycomb is a quasiregular space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of alternating regular octahedra and tetrahedra in a ratio of 1:2.
Other names i ...
.
*# An alternated
hexagonal prismatic honeycomb
The triangular prismatic honeycomb or triangular prismatic cellulation is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed entirely of triangular prisms.
It is constructed from a triangular tiling extruded into pri ...
is the
gyrated alternated cubic honeycomb
The tetrahedral-octahedral honeycomb, alternated cubic honeycomb is a quasiregular space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of alternating regular octahedra and tetrahedra in a ratio of 1:2.
Other names incl ...
.
*
4-polytope
*# An alternated
truncated 24-cell
In geometry, a truncated 24-cell is a uniform 4-polytope (4-dimensional uniform polytope) formed as the truncation of the regular 24-cell.
There are two degrees of truncations, including a bitruncation.
Truncated 24-cell
The truncated 24- ...
is the
snub 24-cell
In geometry, the snub 24-cell or snub disicositetrachoron is a convex uniform 4-polytope composed of 120 regular tetrahedral and 24 icosahedral cells. Five tetrahedra and three icosahedra meet at each vertex. In total it has 480 triangular face ...
.
* 4-honeycombs:
*# An alternated
truncated 24-cell honeycomb
In four-dimensional Euclidean geometry, the truncated 24-cell honeycomb is a uniform space-filling honeycomb. It can be seen as a truncation of the regular 24-cell honeycomb, containing tesseract and truncated 24-cell cells.
It has a uniform alte ...
is the
snub 24-cell honeycomb
In four-dimensional Euclidean geometry, the snub 24-cell honeycomb, or snub icositetrachoric honeycomb is a uniform space-filling tessellation (or honeycomb) by snub 24-cells, 16-cells, and 5-cells. It was discovered by Thorold Gosset with his 1900 ...
.
* A
hypercube
In geometry, a hypercube is an ''n''-dimensional analogue of a square () and a cube (). It is a closed, compact, convex figure whose 1- skeleton consists of groups of opposite parallel line segments aligned in each of the space's dimensions, ...
can always be alternated into a uniform
demihypercube
In geometry, demihypercubes (also called ''n-demicubes'', ''n-hemicubes'', and ''half measure polytopes'') are a class of ''n''- polytopes constructed from alternation of an ''n''- hypercube, labeled as ''hγn'' for being ''half'' of the hy ...
.
*#
Cube
In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross.
The cube is the only r ...
→
Tetrahedron
In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the o ...
(regular)
*#* →
*# ''Tesseract'' (
8-cell
In geometry, a tesseract is the four-dimensional analogue of the cube; the tesseract is to the cube as the cube is to the square. Just as the surface of the cube consists of six square faces, the hypersurface of the tesseract consists of eigh ...
) →
16-cell (regular)
*#* →
*#
Penteract
In five-dimensional geometry, a 5-cube is a name for a five-dimensional hypercube with 32 vertices, 80 edges, 80 square faces, 40 cubic cells, and 10 tesseract 4-faces.
It is represented by Schläfli symbol or , constructed as 3 tesseract ...
→
demipenteract
In five-dimensional geometry, a demipenteract or 5-demicube is a semiregular 5-polytope, constructed from a ''5-hypercube'' ( penteract) with alternated vertices removed.
It was discovered by Thorold Gosset. Since it was the only semiregular 5 ...
(semiregular)
*#
Hexeract →
demihexeract
In geometry, a 6-demicube or demihexteract is a uniform 6-polytope, constructed from a ''6-cube'' (hexeract) with alternated vertices removed. It is part of a dimensionally infinite family of uniform polytopes called demihypercubes.
E. L. Elte ...
(uniform)
*# ...
Altered polyhedra
Coxeter also used the operator ''a'', which contains both halves, so retains the original symmetry. For even-sided regular polyhedra, a represents a
compound polyhedron with two opposite copies of h. For odd-sided, greater than 3, regular polyhedra a, becomes a
star polyhedron
In geometry, a star polyhedron is a polyhedron which has some repetitive quality of nonconvexity giving it a star-like visual quality.
There are two general kinds of star polyhedron:
*Polyhedra which self-intersect in a repetitive way.
*Concave p ...
.
Norman Johnson extended the use of the altered operator ''a'', ''b'' for blended, and ''c'' for converted, as , , and respectively.
The compound polyhedron known as the
stellated octahedron
The stellated octahedron is the only stellation of the octahedron. It is also called the stella octangula (Latin for "eight-pointed star"), a name given to it by Johannes Kepler in 1609, though it was known to earlier geometers. It was depicte ...
can be represented by a (an altered
cube
In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross.
The cube is the only r ...
), and ,
.
The star polyhedron known as the
small ditrigonal icosidodecahedron can be represented by a (an altered
dodecahedron
In geometry, a dodecahedron (Greek , from ''dōdeka'' "twelve" + ''hédra'' "base", "seat" or "face") or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagon ...
), and ,
. Here all the pentagons have been alternated into pentagrams, and triangles have been inserted to take up the resulting free edges.
The star polyhedron known as the
great ditrigonal icosidodecahedron can be represented by a (an altered
great stellated dodecahedron
In geometry, the great stellated dodecahedron is a Kepler-Poinsot polyhedron, with Schläfli symbol . It is one of four nonconvex regular polyhedra.
It is composed of 12 intersecting pentagrammic faces, with three pentagrams meeting at each ve ...
), and ,
. Here all the pentagrams have been alternated back into pentagons, and triangles have been inserted to take up the resulting free edges.
Alternate truncations
A similar operation can
truncate
In mathematics and computer science, truncation is limiting the number of digits right of the decimal point.
Truncation and floor function
Truncation of positive real numbers can be done using the floor function. Given a number x \in \mathbb ...
alternate vertices, rather than just removing them. Below is a set of polyhedra that can be generated from the
Catalan solid
In mathematics, a Catalan solid, or Archimedean dual, is a dual polyhedron to an Archimedean solid. There are 13 Catalan solids. They are named for the Belgian mathematician Eugène Catalan, who first described them in 1865.
The Catalan s ...
s. These have two types of vertices which can be alternately truncated. Truncating the "higher order" vertices and both vertex types produce these forms:
See also
*
Conway polyhedral notation
*
Wythoff construction
In geometry, a Wythoff construction, named after mathematician Willem Abraham Wythoff, is a method for constructing a uniform polyhedron or plane tiling. It is often referred to as Wythoff's kaleidoscopic construction.
Construction process
...
References
*
Coxeter, H.S.M. ''
Regular Polytopes
In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry. All its elements or -faces (for all , where is the dimension of the polytope) — cells, ...
'', (3rd edition, 1973), Dover edition,
*
Norman Johnson ''Uniform Polytopes'', Manuscript (1991)
**
N.W. Johnson: ''The Theory of Uniform Polytopes and Honeycombs'', Ph.D. Dissertation, University of Toronto, 1966
*
* Richard Klitzing, ''Snubs, alternated facetings, and Stott-Coxeter-Dynkin diagrams'', Symmetry: Culture and Science, Vol. 21, No.4, 329-344, (2010
External links
*
Polyhedra Names, snub
{{Polyhedron operators
Polyhedra
4-polytopes