HOME
*





Oscillatory Integral
In mathematical analysis an oscillatory integral is a type of distribution. Oscillatory integrals make rigorous many arguments that, on a naive level, appear to use divergent integrals. It is possible to represent approximate solution operators for many differential equations as oscillatory integrals. Definition An oscillatory integral f(x) is written formally as : f(x) = \int e^\, a(x, \xi) \, \mathrm\xi, where \phi(x, \xi) and a(x, \xi) are functions defined on \mathbb_x^n \times \mathrm^N_\xi with the following properties: # The function \phi is real-valued, positive-homogeneous of degree 1, and infinitely differentiable away from \ . Also, we assume that \phi does not have any critical points on the support of a . Such a function, \phi is usually called a phase function. In some contexts more general functions are considered and still referred to as phase functions. # The function a belongs to one of the symbol classes S^m_(\mathbb_x^n \times \m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Analysis
Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (mathematics), series, and analytic functions. These theories are usually studied in the context of Real number, real and Complex number, complex numbers and Function (mathematics), functions. Analysis evolved from calculus, which involves the elementary concepts and techniques of analysis. Analysis may be distinguished from geometry; however, it can be applied to any Space (mathematics), space of mathematical objects that has a definition of nearness (a topological space) or specific distances between objects (a metric space). History Ancient Mathematical analysis formally developed in the 17th century during the Scientific Revolution, but many of its ideas can be traced back to earlier mathematicians. Early results in analysis were i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fourier Transform
A Fourier transform (FT) is a mathematical transform that decomposes functions into frequency components, which are represented by the output of the transform as a function of frequency. Most commonly functions of time or space are transformed, which will output a function depending on temporal frequency or spatial frequency respectively. That process is also called ''analysis''. An example application would be decomposing the waveform of a musical chord into terms of the intensity of its constituent pitches. The term ''Fourier transform'' refers to both the frequency domain representation and the mathematical operation that associates the frequency domain representation to a function of space or time. The Fourier transform of a function is a complex-valued function representing the complex sinusoids that comprise the original function. For each frequency, the magnitude (absolute value) of the complex value represents the amplitude of a constituent complex sinusoid with that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Generalized Functions
In mathematics, generalized functions are objects extending the notion of functions. There is more than one recognized theory, for example the theory of distributions. Generalized functions are especially useful in making discontinuous functions more like smooth functions, and describing discrete physical phenomena such as point charges. They are applied extensively, especially in physics and engineering. A common feature of some of the approaches is that they build on operator aspects of everyday, numerical functions. The early history is connected with some ideas on operational calculus, and more contemporary developments in certain directions are closely related to ideas of Mikio Sato, on what he calls algebraic analysis. Important influences on the subject have been the technical requirements of theories of partial differential equations, and group representation theory. Some early history In the mathematics of the nineteenth century, aspects of generalized function theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Analysis
Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (mathematics), series, and analytic functions. These theories are usually studied in the context of Real number, real and Complex number, complex numbers and Function (mathematics), functions. Analysis evolved from calculus, which involves the elementary concepts and techniques of analysis. Analysis may be distinguished from geometry; however, it can be applied to any Space (mathematics), space of mathematical objects that has a definition of nearness (a topological space) or specific distances between objects (a metric space). History Ancient Mathematical analysis formally developed in the 17th century during the Scientific Revolution, but many of its ideas can be traced back to earlier mathematicians. Early results in analysis were i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lars Hörmander
Lars Valter Hörmander (24 January 1931 – 25 November 2012) was a Swedish mathematician who has been called "the foremost contributor to the modern theory of linear partial differential equations". Hörmander was awarded the Fields Medal in 1962 and the Wolf Prize in 1988. In 2006 he was awarded the Steele Prize for Mathematical Exposition for his four-volume textbook ''Analysis of Linear Partial Differential Operators'', which is considered a foundational work on the subject. Hörmander completed his Ph.D. in 1955 at Lund University. Hörmander then worked at Stockholm University, at Stanford University, and at the Institute for Advanced Study in Princeton, New Jersey. He returned to Lund University as a professor from 1968 until 1996, when he retired with the title of professor emeritus. Biography Education Hörmander was born in Mjällby, a village in Blekinge in southern Sweden where his father was a teacher. Like his older brothers and sisters before him, he att ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Van Der Corput Lemma (harmonic Analysis)
In mathematics, in the field of harmonic analysis, the van der Corput lemma is an estimate for oscillatory integrals named after the Dutch mathematician J. G. van der Corput. The following result is stated by E. Stein: Suppose that a real-valued function \phi(x) is smooth in an open interval (a, b), and that , \phi^(x), \ge 1 for all x \in (a, b). Assume that either k \ge 2, or that k = 1 and \phi'(x) is monotone for x \in \R. Then there is a constant c_k, which does not depend on \phi, such that : \bigg, \int_a^b e^\bigg, \le c_k\lambda^ for any \lambda \in \R. Sublevel set estimates The van der Corput lemma is closely related to the sublevel set In mathematics, a level set of a real-valued function of real variables is a set where the function takes on a given constant value , that is: : L_c(f) = \left\~, When the number of independent variables is two, a level set is calle ... estimates,M. Christ, ''Hilbert transforms along curves'', Ann. of Ma ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Riemann–Lebesgue Lemma
In mathematics, the Riemann–Lebesgue lemma, named after Bernhard Riemann and Henri Lebesgue, states that the Fourier transform or Laplace transform of an ''L''1 function vanishes at infinity. It is of importance in harmonic analysis and asymptotic analysis. Statement Let f\in L^1(\R^n) be an integrable function, i.e. f\colon\R^n \rightarrow \C is a measurable function such that :\, f\, _ = \int_ , f(x), \mathrmx 0, pick a compactly supported continuous function g such that \, f-g\, _ \leq \varepsilon. Then : \limsup_ , \hat(\xi), \leq \limsup_ \left, \int (f(x)-g(x))\mathrm^ \, \mathrmx\ + \limsup_ \left, \int g(x)\mathrm^ \, \mathrmx\ \leq \varepsilon + 0 = \varepsilon. Because this holds for any \varepsilon > 0, it follows that , \hat(\xi), \to 0 as , \xi, \to\infty . Other versions The Riemann–Lebesgue lemma holds in a variety of other situations. * If f \in L^1 z, \to \infty within the half-plane \mathrm(z) \geq 0. * A version holds for Fourier coefficients ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Schwartz Kernel Theorem
In mathematics, the Schwartz kernel theorem is a foundational result in the theory of generalized functions, published by Laurent Schwartz in 1952. It states, in broad terms, that the generalized functions introduced by Schwartz (Schwartz distributions) have a two-variable theory that includes all reasonable bilinear forms on the space \mathcal of test functions. The space \mathcal itself consists of smooth functions of compact support. Statement of the theorem Let X and Y be open sets in \mathbb^n. Every distribution k \in \mathcal'(X \times Y) defines a continuous linear map K \colon \mathcal(Y) \to \mathcal'(X) such that for every u \in \mathcal(X), v \in \mathcal(Y). Conversely, for every such continuous linear map K there exists one and only one distribution k \in \mathcal'(X \times Y) such that () holds. The distribution k is the kernel of the map K. Note Given a distribution k \in \mathcal'(X \times Y) one can always write the linear map K informally as :Kv = \int_ k(\c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Laplace Operator
In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \nabla is the nabla operator), or \Delta. In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian of a function at a point measures by how much the average value of over small spheres or balls centered at deviates from . The Laplace operator is named after the French mathematician Pierre-Simon de Laplace (1749–1827), who first applied the operator to the study of celestial mechanics: the Laplacian of the gravitational potential due to a given mass density distribution is a constant multiple of that densi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gaussian
Carl Friedrich Gauss (1777–1855) is the eponym of all of the topics listed below. There are over 100 topics all named after this German mathematician and scientist, all in the fields of mathematics, physics, and astronomy. The English eponymous adjective ''Gaussian'' is pronounced . Mathematics Algebra and linear algebra Geometry and differential geometry Number theory Cyclotomic fields *Gaussian period *Gaussian rational *Gauss sum, an exponential sum over Dirichlet characters ** Elliptic Gauss sum, an analog of a Gauss sum **Quadratic Gauss sum Analysis, numerical analysis, vector calculus and calculus of variations Complex analysis and convex analysis *Gauss–Lucas theorem *Gauss's continued fraction, an analytic continued fraction derived from the hypergeometric functions * Gauss's criterion – described oEncyclopedia of Mathematics* Gauss's hypergeometric theorem, an identity on hypergeometric series *Gauss plane Statistics *Gauss–Kuzmi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dirac Delta Function
In mathematics, the Dirac delta distribution ( distribution), also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. The current understanding of the unit impulse is as a linear functional that maps every continuous function (e.g., f(x)) to its value at zero of its domain (f(0)), or as the weak limit of a sequence of bump functions (e.g., \delta(x) = \lim_ \frace^), which are zero over most of the real line, with a tall spike at the origin. Bump functions are thus sometimes called "approximate" or "nascent" delta distributions. The delta function was introduced by physicist Paul Dirac as a tool for the normalization of state vectors. It also has uses in probability theory and signal processing. Its validity was disputed until Laurent Schwartz developed the theory of distributions where it is defined as a linear form acting on ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Distribution (mathematics)
Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative. Distributions are widely used in the theory of partial differential equations, where it may be easier to establish the existence of distributional solutions than classical solutions, or where appropriate classical solutions may not exist. Distributions are also important in physics and engineering where many problems naturally lead to differential equations whose solutions or initial conditions are singular, such as the Dirac delta function. A function f is normally thought of as on the in the function domain by "sending" a point x in its domain to the point f(x). Instead of acting on points, distribution theory reinterpr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]