Noise (spectral Phenomenon)
   HOME
*





Noise (spectral Phenomenon)
Noise refers to many types of random, troublesome, problematic, or unwanted signals. Acoustic noise may mar aesthetic experience, such as attending a concert hall. It may also be a medical issue inherent in the biology of hearing. In technology, noise is unwanted signals in a device or apparatus, commonly of an electrical nature. The nature of noise is much studied in mathematics and is a prominent topic in statistics. This article provides a survey of specific topics linked to their primary articles. Acoustic noise {{main, Noise In transportation *Aircraft noise * Jet noise, caused by high-velocity jets and turbulent eddies *Noise and vibration on maritime vessels *Noise, vibration, and harshness, quality criteria for vehicles *Traffic noise, including roadway noise and train noise Other acoustic noise * Acoustic noise, technical term for any sound, even deliberate *Artificial noise, in spectator sports * Background noise, in acoustics, any sound other than the monitored ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Signal (electrical Engineering)
In signal processing, a signal is a function that conveys information about a phenomenon. Any quantity that can vary over space or time can be used as a signal to share messages between observers. The ''IEEE Transactions on Signal Processing'' includes audio, video, speech, image, sonar, and radar as examples of signal. A signal may also be defined as observable change in a quantity over space or time (a time series), even if it does not carry information. In nature, signals can be actions done by an organism to alert other organisms, ranging from the release of plant chemicals to warn nearby plants of a predator, to sounds or motions made by animals to alert other animals of food. Signaling occurs in all organisms even at cellular levels, with cell signaling. Signaling theory, in evolutionary biology, proposes that a substantial driver for evolution is the ability of animals to communicate with each other by developing ways of signaling. In human engineering, signals are typi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cellular Noise
Cellular noise is random variability in quantities arising in cellular biology. For example, cells which are genetically identical, even within the same tissue, are often observed to have different expression levels of proteins, different sizes and structures. These apparently random differences can have important biological and medical consequences. Cellular noise was originally, and is still often, examined in the context of gene expression levels – either the concentration or copy number of the products of genes within and between cells. As gene expression levels are responsible for many fundamental properties in cellular biology, including cells' physical appearance, behaviour in response to stimuli, and ability to process information and control internal processes, the presence of noise in gene expression has profound implications for many processes in cellular biology. Definitions The most frequent quantitative definition of noise is the coefficient of variation: : \et ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Noise (electronics)
In electronics, noise is an unwanted disturbance in an electrical signal. Noise generated by electronic devices varies greatly as it is produced by several different effects. In particular, noise is inherent in physics, and central to thermodynamics. Any conductor with electrical resistance will generate thermal noise inherently. The final elimination of thermal noise in electronics can only be achieved cryogenically, and even then quantum noise would remain inherent. Electronic noise is a common component of noise in signal processing. In communication systems, noise is an error or undesired random disturbance of a useful information signal in a communication channel. The noise is a summation of unwanted or disturbing energy from natural and sometimes man-made sources. Noise is, however, typically distinguished from interference, for example in the signal-to-noise ratio (SNR), signal-to-interference ratio (SIR) and signal-to-noise plus interference ratio (SNIR) measu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Noise (signal Processing)
In signal processing, noise is a general term for unwanted (and, in general, unknown) modifications that a signal (signal processing), signal may suffer during capture, storage, transmission, processing, or conversion. Vyacheslav Tuzlukov (2010), ''Signal Processing Noise'', Electrical Engineering and Applied Signal Processing Series, CRC Press. 688 pages. Sometimes the word is also used to mean signals that are Randomness, random (Predictability, unpredictable) and carry no useful information; even if they are not interfering with other signals or may have been introduced intentionally, as in comfort noise. Noise reduction, the recovery of the original signal from the noise-corrupted one, is a very common goal in the design of signal processing systems, especially filter (signal processing), filters. The mathematical limits for noise removal are set by information theory. Types of noise Signal processing noise can be classified by its statistical properties (sometimes ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Worley Noise
Worley noise is a noise function introduced by Steven Worley in 1996. In computer graphics it is used to create procedural textures, i.e. textures that are created automatically with arbitrary precision and do not have to be drawn by hand. Worley noise comes close to simulating textures of stone, water, or biological cells. Basic algorithm The algorithm chooses random points in space (2- or 3-dimensional) and then for every location in space takes the distances d''n'' to the ''n''th-closest point (e.g. the second-closest point) and uses combinations of those to control color information (note that d''n+1'' > d''n''). More precisely: * Randomly distribute feature points in space organised as grid cells. In practice this is done on the fly without storage (as a ''procedural noise''). The original method considered a variable number of seed points per cell so as to mimic a Poisson distribution, but many implementations just put one. * At run time, extract the distances d''n'' from th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wavelet Noise
Wavelet noise is an alternative to Perlin noise which reduces the problems of aliasing and detail loss that are encountered when Perlin noise is summed into a fractal In mathematics, a fractal is a geometric shape containing detailed structure at arbitrarily small scales, usually having a fractal dimension strictly exceeding the topological dimension. Many fractals appear similar at various scales, as illu .... External links Wavelet Noise Paperat pixar.com. Computer graphics Noise (graphics) {{compu-graphics-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Value Noise
Value noise is a type of noise commonly used as a procedural texture primitive in computer graphics. It is conceptually different from, and often confused with gradient noise, examples of which are Perlin noise and Simplex noise. This method consists of the creation of a lattice of points which are assigned random values. The noise function then returns the interpolated number based on the values of the surrounding lattice points. For many applications, multiple octaves of this noise can be generated and then summed together, just as can be done with Perlin noise and Simplex noise, in order to create a form of fractal noise Pink noise or noise is a signal or process with a frequency spectrum such that the power spectral density (power per frequency interval) is inversely proportional to the frequency of the signal. In pink noise, each octave interval (halving or .... External links * - an explanation and implementation of Value Noise, mislabeled as Perlin noise. Lesson ex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simulation Noise
Simulation noise is a function that creates a divergence-free vector field. This signal can be used in artistic simulations for the purposes of increasing the perception of extra detail. The function can be calculated in three dimensions by dividing the space into a regular lattice grid. With each edge is associated a random value, indicating a rotational component of material revolving around the edge. By following rotating material into and out of faces, one can quickly sum the flux passing through each face of the lattice. Flux values at lattice faces are then interpolated to create a field value for all positions. Perlin noise is the earliest form of lattice noise, which has become very popular in computer graphics. Perlin Noise is not suited for simulation because it is not divergence-free. Noises based on lattices, such as simulation noise and Perlin noise, are often calculated at different frequencies and summed together to form band-limited fractal signals. Other app ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Simplex Noise
Simplex noise is the result of an ''n''-dimensional noise function comparable to Perlin noise ("classic" noise) but with fewer directional artifacts and, in higher dimensions, a lower computational overhead. Ken Perlin designed the algorithm in 2001 to address the limitations of his classic noise function, especially in higher dimensions. The advantages of simplex noise over Perlin noise: * Simplex noise has lower computational complexity and requires fewer multiplications. * Simplex noise scales to higher dimensions (4D, 5D) with much less computational cost: the complexity is O(n^2) for n dimensions instead of the O(n\,2^n) of classic noise. * Simplex noise has no noticeable directional artifacts (is visually isotropic), though noise generated for different dimensions is visually distinct (e.g. 2D noise has a different look than 2D slices of 3D noise, and it looks increasingly worse for higher dimensions). * Simplex noise has a well-defined and continuous gradient (almost) ever ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Perlin Noise
Perlin noise is a type of gradient noise developed by Ken Perlin. History Ken Perlin developed Perlin noise in 1983 as a result of his frustration with the "machine-like" look of computer-generated imagery (CGI) at the time. He formally described his findings in a SIGGRAPH paper in 1985 called ''An Image Synthesizer''. He developed it after working on Disney's computer animated sci-fi motion picture ''Tron'' (1982) for the animation company Mathematical Applications Group (MAGI). In 1997, Perlin was awarded an Academy Award for Technical Achievement for creating the algorithm, the citation for which read: Perlin did not apply for any patents on the algorithm, but in 2001 he was granted a patent for the use of 3D+ implementations of simplex noise for texture synthesis. Simplex noise has the same purpose, but uses a simpler space-filling grid. Simplex noise alleviates some of the problems with Perlin's "classic noise", among them computational complexity and visually-significan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Gradient Noise
Gradient noise is a type of noise commonly used as a procedural texture primitive in computer graphics. It is conceptually different, and often confused with value noise. This method consists of a creation of a lattice of random (or typically pseudorandom) gradients, dot products of which are then interpolated to obtain values in between the lattices. An artifact of some implementations of this noise is that the returned value at the lattice points is 0. Unlike the value noise, gradient noise has more energy in the high frequencies. The first known implementation of a gradient noise function was Perlin noise, credited to Ken Perlin, who published the description of it in 1985. David Ebert, Kent Musgrave, Darwyn Peachey, Ken Perlin, and Worley. Texturing and Modeling: A Procedural Approach'' Academic Press, October 1994. Later developments were Simplex noise and OpenSimplex noise OpenSimplex noise is an n-dimensional (up to 4D) gradient noise function that was developed in orde ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transcriptional Noise
Transcriptional noise is a primary cause of the variability (noise) in gene expression occurring between cells in isogenic populations (see also cellular noise) . A proposed source of transcriptional noise is transcriptional bursting although other sources of heterogeneity, such as unequal separation of cell contents at mitosis are also likely to contribute considerably. Bursting transcription, as opposed to simple probabilistic models of transcription, reflects multiple states of gene activity, with fluctuations between states separated by irregular intervals, generating uneven protein expression between cells. Noise in gene expression can have tremendous consequences on cell behaviour, and must be mitigated or integrated. In certain contexts, such as establishment of viral latency, the survival of microbes in rapidly changing stressful environments, or several types of scattered differentiation, the variability may be essential. Variability also impacts upon the effectiveness ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]