HOME





Noise (signal Processing)
In signal processing, noise is a general term for unwanted (and, in general, unknown) modifications that a signal may suffer during capture, storage, transmission, processing, or conversion.Vyacheslav Tuzlukov (2010), ''Signal Processing Noise'', Electrical Engineering and Applied Signal Processing Series, CRC Press. 688 pages. Sometimes the word is also used to mean signals that are random (Predictability, unpredictable) and carry no useful information; even if they are not interfering with other signals or may have been introduced intentionally, as in comfort noise. Noise reduction, the recovery of the original signal from the noise-corrupted one, is a very common goal in the design of signal processing systems, especially filter (signal processing), filters. The mathematical limits for noise removal are set by information theory. Types of noise Signal processing noise can be classified by its statistical properties (sometimes called the "colors of noise, color" of the noi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Signal Processing
Signal processing is an electrical engineering subfield that focuses on analyzing, modifying and synthesizing ''signals'', such as audio signal processing, sound, image processing, images, Scalar potential, potential fields, Seismic tomography, seismic signals, Altimeter, altimetry processing, and scientific measurements. Signal processing techniques are used to optimize transmissions, Data storage, digital storage efficiency, correcting distorted signals, improve subjective video quality, and to detect or pinpoint components of interest in a measured signal. History According to Alan V. Oppenheim and Ronald W. Schafer, the principles of signal processing can be found in the classical numerical analysis techniques of the 17th century. They further state that the digital refinement of these techniques can be found in the digital control systems of the 1940s and 1950s. In 1948, Claude Shannon wrote the influential paper "A Mathematical Theory of Communication" which was publis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Brownian Noise
In science, Brownian noise, also known as Brown noise or red noise, is the type of signal noise produced by Brownian motion, hence its alternative name of random walk noise. The term "Brown noise" does not come from brown, the color, but after Robert Brown (Scottish botanist from Montrose), Robert Brown, who documented the erratic motion for multiple types of inanimate particles in water. The term "red noise" comes from the "white noise"/"white light" analogy; red noise is strong in longer wavelengths, similar to the red end of the visible spectrum. Explanation The graphic representation of the sound signal mimics a Brownian pattern. Its spectral density is inversely proportional to ''f'' 2, meaning it has higher intensity at lower frequencies, even more so than pink noise. It decreases in intensity by 6 Decibel, dB per Octave (electronics), octave (20 dB per Decade (log scale), decade) and, when heard, has a "damped" or "soft" quality compared to white noise, white and p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Comfort Noise
Comfort noise (or comfort tone) is synthetic background noise used in radio and wireless communications to fill the artificial silence in a transmission resulting from voice activity detection or from the audio clarity of modern digital lines. Some modern telephone systems (such as wireless and VoIP) use voice activity detection (VAD), a form of squelching where low volume levels are ignored by the transmitting device. In digital audio transmissions, this saves bandwidth of the communications channel by transmitting nothing when the source volume is under a certain threshold, leaving only louder sounds (such as the speaker's voice) to be sent. However, improvements in background noise reduction technologies can occasionally result in the complete removal of all noise. Although maximizing call quality is of primary importance, exhaustive removal of noise may not properly simulate the typical behavior of terminals on the PSTN system. Issues with silence The result of receivi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Background Noise
Background noise or ambient noise is any sound other than the sound being monitored (primary sound). Background noise is a form of noise pollution or interference. Background noise is an important concept in setting noise levels. Background noises include environmental noises such as water waves, traffic noise, alarms, extraneous speech, bioacoustic noise from animals, and electrical noise from devices such as refrigerators, air conditioning, power supplies, and  motors. The prevention or reduction of background noise is important in the field of active noise control. It is an important consideration with the use of ultrasound (e.g. for medical diagnosis or imaging), sonar, and sound reproduction. Other uses In astronomy, background noise or cosmic background radiation is electromagnetic radiation from the sky with no discernible source. In information architecture, irrelevant, duplicate or incorrect information may be called background noise. In physics and telecommun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Noise (audio)
Noise is sound, chiefly unwanted, unintentional, or harmful sound considered unpleasant, loud, or disruptive to mental or hearing faculties. From a physics standpoint, there is no distinction between noise and desired sound, as both are vibrations through a medium, such as air or water. The difference arises when the brain receives and perceives a sound. Acoustic noise is any sound in the acoustic domain, either deliberate (e.g., music or speech) or unintended. In contrast, noise in electronics may not be audible to the human ear and may require instruments for detection. In audio engineering, noise can refer to the unwanted residual electronic noise signal that gives rise to acoustic noise heard as a hiss. This signal noise is commonly measured using A-weighting or ITU-R 468 weighting. In experimental sciences, noise can refer to any random fluctuations of data that hinders perception of a signal. Measurement Sound is measured based on the amplitude and frequency of a sou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Phase Noise
In signal processing, phase noise is the frequency-domain representation of random fluctuations in the phase of a waveform, corresponding to time-domain deviations from perfect periodicity (jitter). Generally speaking, radio-frequency engineers speak of the phase noise of an oscillator, whereas digital-system engineers work with the jitter of a clock. Definitions An ideal oscillator would generate a pure sine wave. In the frequency domain, this would be represented as a single pair of Dirac delta functions (positive and negative conjugates) at the oscillator's frequency; i.e., all the signal's power is at a single frequency. All real oscillators have phase modulated noise components. The phase noise components spread the power of a signal to adjacent frequencies, resulting in noise sidebands. Consider the following noise-free signal: :x(t)= A\cos(2 \pi f_0 t) Phase noise is added to this signal by adding a stochastic process represented by \phi(t) to the signal a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Burst Noise
Burst noise is a type of electronic noise that occurs in semiconductors and ultra-thin gate oxide films. It is also called random telegraph noise (RTN), popcorn noise, impulse noise, bi-stable noise, or random telegraph signal (RTS) noise. It consists of sudden step-like transitions between two or more discrete voltage or current levels, as high as several hundred microvolts, at random and unpredictable times. Each shift in offset voltage or current often lasts from several milliseconds to seconds, and sounds like popcorn popping if hooked up to an audio speaker. Burst noise was first observed in early point contact diodes, then re-discovered during the commercialization of one of the first semiconductor op-amps; the 709. No single source of burst noise is theorized to explain all occurrences, however the most commonly invoked cause is the random trapping and release of charge carriers at thin film interfaces or at defect sites in bulk semiconductor crystal. In cases where ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Transient Noise
Transient noise pulses consist of a relatively short pulse followed by decaying low frequency oscillations. The initial peak is often due to an impulse interference, and the following oscillations are due to resonance on the channel that received the initial pulse. The source of these noise pulses is often channel interference. See also *Transient (acoustics) In acoustics and audio, a transient is a high amplitude, short-duration sound at the beginning of a waveform that occurs in phenomena such as musical sounds, noises or speech. Transients do not necessarily directly depend on the frequency of the ... Noise (electronics) {{sound-tech-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Shot Noise
Shot noise or Poisson noise is a type of noise which can be modeled by a Poisson process. In electronics shot noise originates from the discrete nature of electric charge. Shot noise also occurs in photon counting in optical devices, where shot noise is associated with the particle nature of light. Origin In a statistical experiment such as tossing a fair coin and counting the occurrences of heads and tails, the numbers of heads and tails after many throws will differ by only a tiny percentage, while after only a few throws outcomes with a significant excess of heads over tails or vice versa are common; if an experiment with a few throws is repeated over and over, the outcomes will fluctuate a lot. From the law of large numbers, one can show that the relative fluctuations reduce as the reciprocal square root of the number of throws, a result valid for all statistical fluctuations, including shot noise. Shot noise exists because phenomena such as light and electric curren ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Poisson Noise
Shot noise or Poisson noise is a type of noise which can be modeled by a Poisson process. In electronics shot noise originates from the discrete nature of electric charge. Shot noise also occurs in photon counting in optical devices, where shot noise is associated with the particle nature of light. Origin In a statistical experiment such as tossing a fair coin and counting the occurrences of heads and tails, the numbers of heads and tails after many throws will differ by only a tiny percentage, while after only a few throws outcomes with a significant excess of heads over tails or vice versa are common; if an experiment with a few throws is repeated over and over, the outcomes will fluctuate a lot. From the law of large numbers, one can show that the relative fluctuations reduce as the reciprocal square root of the number of throws, a result valid for all statistical fluctuations, including shot noise. Shot noise exists because phenomena such as light and electric current ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantization Error
Quantization, in mathematics and digital signal processing, is the process of mapping input values from a large set (often a continuous set) to output values in a (countable) smaller set, often with a finite number of elements. Rounding and truncation are typical examples of quantization processes. Quantization is involved to some degree in nearly all digital signal processing, as the process of representing a signal in digital form ordinarily involves rounding. Quantization also forms the core of essentially all lossy compression algorithms. The difference between an input value and its quantized value (such as round-off error) is referred to as quantization error, noise or distortion. A device or algorithmic function that performs quantization is called a quantizer. An analog-to-digital converter is an example of a quantizer. Example For example, rounding a real number x to the nearest integer value forms a very basic type of quantizer – a ''uniform'' one. A typi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multiplicative Noise
In signal processing, the term multiplicative noise refers to an unwanted random signal that gets multiplied into some relevant signal during capture, transmission, or other processing. Multiplicative noise is a type of signal-dependent noise where the noise amplitude scales with the signal's intensity. Unlike additive noise, which is independent of the signal, multiplicative noise complicates processing due to its dependence on the underlying signal. An important example is the speckle noise commonly observed in radar imagery. Examples of multiplicative noise affecting digital photographs are proper shadows due to undulations on the surface of the imaged objects, shadows cast by complex objects like foliage and Venetian blinds, dark spots caused by dust in the lens or image sensor, and variations in the gain of individual elements of the image sensor array. Maria Petrou, Costas Petrou (2010Image Processing: The Fundamentals John Wiley & Sons. 818 pages. Multiplicative No ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]