NetBurst
The NetBurst microarchitecture, called P68 inside Intel, was the successor to the P6 microarchitecture in the x86 family of central processing units (CPUs) made by Intel. The first CPU to use this architecture was the Willamette-core Pentium 4, released on November 20, 2000 and the first of the Pentium 4 CPUs; all subsequent Pentium 4 and Pentium D variants have also been based on NetBurst. In mid-2004, Intel released the ''Foster'' core, which was also based on NetBurst, thus switching the Xeon CPUs to the new architecture as well. Pentium 4-based Celeron CPUs also use the NetBurst architecture. NetBurst was replaced with the Core microarchitecture based on P6, released in July 2006. Technology The NetBurst microarchitecture includes features such as Hyper-threading, Hyper Pipelined Technology, Rapid Execution Engine, Execution Trace Cache, and replay system which all were introduced for the first time in this particular microarchitecture, and some never appeared agai ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Celeron
Celeron is Intel's brand name for low-end IA-32 and x86-64 computer microprocessor models targeted at low-cost personal computers. Celeron processors are compatible with IA-32 software. They typically offer less performance per clock speed compared to flagship Intel CPU lines, such as the Pentium or Core brands. Celeron branded processors often have less cache or intentionally disabled advanced features, with variable impact on performance. While some Celeron designs have achieved strong performance for their segment, most of the Celeron line has exhibited noticeably degraded performance. This has been the primary justification for the higher cost of other Intel CPU brands versus the Celeron range. Introduced in April 1998, the first Celeron-branded CPU was based on the Pentium II. Subsequent Celeron-branded CPUs were based on the Pentium III, Pentium 4, Pentium M, and Intel Core. In September 2022, Intel announced that the Celeron brand, along with Pentium, will be replaced w ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pentium 4
Pentium 4 is a series of single-core CPUs for desktops, laptops and entry-level servers manufactured by Intel. The processors were shipped from November 20, 2000 until August 8, 2008. The production of Netburst processors was active from 2000 until May 21, 2010. All Pentium 4 CPUs are based on the NetBurst microarchitecture. The Pentium 4 '' Willamette'' (180 nm) introduced SSE2, while the '' Prescott'' (90 nm) introduced SSE3. Later versions introduced Hyper-Threading Technology (HTT). The first Pentium 4-branded processor to implement 64-bit was the ''Prescott'' (90 nm) (February 2004), but this feature was not enabled. Intel subsequently began selling 64-bit Pentium 4s using the ''"E0" revision'' of the Prescotts, being sold on the OEM market as the Pentium 4, model F. The E0 revision also adds eXecute Disable (XD) (Intel's name for the NX bit) to Intel 64. Intel's official launch of Intel 64 (under the name EM64T at that time) in mainstream de ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nehalem (microarchitecture)
Nehalem is the codename for Intel's 45 nm microarchitecture released in November 2008. It was used in the first-generation of the Intel Core i5 and i7 processors, and succeeds the older Core microarchitecture used on Core 2 processors. The term "Nehalem" comes from the Nehalem River. Nehalem is built on the 45 nm process, is able to run at higher clock speeds, and is more energy-efficient than Penryn microprocessors. Hyper-threading is reintroduced, along with a reduction in L2 cache size, as well as an enlarged L3 cache that is shared among all cores. Nehalem is an architecture that differs radically from Netburst, while retaining some of the latter's minor features. Nehalem later received a die-shrink to 32 nm with Westmere, and was fully succeeded by "second-generation" Sandy Bridge in January 2011. Technology * Cache line block on L2/L3 cache was reduced from 128 bytes in Netburst & Conroe/Penryn to 64 bytes per line in this generation (same size as Yonah a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Execution Trace Cache
The NetBurst microarchitecture, called P68 inside Intel, was the successor to the P6 microarchitecture in the x86 family of central processing units (CPUs) made by Intel. The first CPU to use this architecture was the Willamette-core Pentium 4, released on November 20, 2000 and the first of the Pentium 4 CPUs; all subsequent Pentium 4 and Pentium D variants have also been based on NetBurst. In mid-2004, Intel released the ''Foster'' core, which was also based on NetBurst, thus switching the Xeon CPUs to the new architecture as well. Pentium 4-based Celeron CPUs also use the NetBurst architecture. NetBurst was replaced with the Core microarchitecture based on P6, released in July 2006. Technology The NetBurst microarchitecture includes features such as Hyper-threading, Hyper Pipelined Technology, Rapid Execution Engine, Execution Trace Cache, and replay system which all were introduced for the first time in this particular microarchitecture, and some never appeared again ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Instruction Pipelining
In computer engineering, instruction pipelining or ILP is a technique for implementing instruction-level parallelism within a single processor. Pipelining attempts to keep every part of the processor busy with some instruction by dividing incoming instructions into a series of sequential steps (the eponymous " pipeline") performed by different processor units with different parts of instructions processed in parallel. Concept and motivation In a pipelined computer, instructions flow through the central processing unit (CPU) in stages. For example, it might have one stage for each step of the von Neumann cycle: Fetch the instruction, fetch the operands, do the instruction, write the results. A pipelined computer usually has "pipeline registers" after each stage. These store information from the instruction and calculations so that the logic gates of the next stage can do the next step. This arrangement lets the CPU complete an instruction on each clock cycle. It is common f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
P6 (microarchitecture)
The P6 microarchitecture is the sixth-generation Intel x86 microarchitecture, implemented by the Pentium Pro microprocessor that was introduced in November 1995. It is frequently referred to as i686. It was succeeded by the NetBurst microarchitecture in 2000, but eventually revived in the Pentium M line of microprocessors. The successor to the Pentium M variant of the P6 microarchitecture is the Core microarchitecture which in turn is also derived from P6. P6 was used within Intel's mainstream offerings from the Pentium Pro to Pentium III, and was widely known for low power consumption, excellent integer performance, and relatively high instructions per cycle (IPC). The P6 line of processing cores was succeeded by the NetBurst (P68) architecture which appeared with the introduction of Pentium 4. The P6 core was the sixth generation Intel microprocessor in the x86 line. The first implementation of the P6 core was the Pentium Pro CPU in 1995, the immediate successor to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Xeon
Xeon ( ) is a brand of x86 microprocessors designed, manufactured, and marketed by Intel, targeted at the non-consumer workstation, server, and embedded system markets. It was introduced in June 1998. Xeon processors are based on the same architecture as regular desktop-grade CPUs, but have advanced features such as support for ECC memory, higher core counts, more PCI Express lanes, support for larger amounts of RAM, larger cache memory and extra provision for enterprise-grade reliability, availability and serviceability (RAS) features responsible for handling hardware exceptions through the Machine Check Architecture. They are often capable of safely continuing execution where a normal processor cannot due to these extra RAS features, depending on the type and severity of the machine-check exception (MCE). Some also support multi-socket systems with two, four, or eight sockets through use of the Ultra Path Interconnect (UPI) bus. Overview The ''Xeon'' brand has been ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Intel Core (microarchitecture)
The Intel Core microarchitecture (provisionally referred to as Next Generation Micro-architecture, and developed as Merom) is a multi-core processor microarchitecture launched by Intel in mid-2006. It is a major evolution over the Yonah, the previous iteration of the P6 microarchitecture series which started in 1995 with Pentium Pro. It also replaced the NetBurst microarchitecture, which suffered from high power consumption and heat intensity due to an inefficient pipeline designed for high clock rate. In early 2004 the new version of NetBurst (Prescott) needed very high power to reach the clocks it needed for competitive performance, making it unsuitable for the shift to dual/multi-core CPUs. On May 7, 2004 Intel confirmed the cancellation of the next NetBurst. Intel had been developing Merom, the 64-bit evolution of the Pentium M, since 2001, and decided to expand it to all market segments, replacing NetBurst in desktop computers and servers. It inherited from Pentium M t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Socket 478
Socket 478, also known as mPGA478 or mPGA478B, is a 478-contact CPU socket used for Intel's Pentium 4 and Celeron series CPUs. Socket 478 was launched in August 2001 in advance of the Northwood core to compete with AMD's 462-pin Socket A and their Athlon XP processors. Socket 478 was intended to be the replacement for Socket 423, a Willamette-based processor socket which was on the market for only a short time. Socket 478 was phased out with the launch of LGA 775 in 2004. Technical specifications Socket 478 was used for all Northwood Pentium 4 and Celeron processors. It supported the first Prescott Pentium 4 processors and all Willamette Celerons, along with several of the Willamette-series Pentium 4s. Socket 478 also supported the newer Prescott-based Celeron D processors, and early Pentium 4 Extreme Edition processors with 2 MB of L3 CPU cache A CPU cache is a hardware cache used by the central processing unit (CPU) of a computer to reduce the average cos ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
SSE2
SSE2 (Streaming SIMD Extensions 2) is one of the Intel SIMD (Single Instruction, Multiple Data) processor supplementary instruction sets first introduced by Intel with the initial version of the Pentium 4 in 2000. It extends the earlier SSE instruction set, and is intended to fully replace MMX. Intel extended SSE2 to create SSE3 in 2004. SSE2 added 144 new instructions to SSE, which has 70 instructions. Competing chip-maker AMD added support for SSE2 with the introduction of their Opteron and Athlon 64 ranges of AMD64 64-bit CPUs in 2003. Features Most of the SSE2 instructions implement the integer vector operations also found in MMX. Instead of the MMX registers they use the XMM registers, which are wider and allow for significant performance improvements in specialized applications. Another advantage of replacing MMX with SSE2 is avoiding the mode switching penalty for issuing x87 instructions present in MMX because it is sharing register space with the x87 FPU. The SSE2 als ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |