Molpro
   HOME
*



picture info

MOLPRO
MOLPRO is a software package used for accurate ''ab initio'' quantum chemistry calculations. It is developed by Peter Knowles at Cardiff University and Hans-Joachim Werner at Universität Stuttgart in collaboration with other authors. The emphasis in the program is on highly accurate computations, with extensive treatment of the electron correlation problem through the multireference configuration interaction, coupled cluster and associated methods. Integral-direct local electron correlation methods reduce the increase of the computational cost with molecular size. Accurate ab initio calculations can then be performed for larger molecules. With new explicitly correlated methods the basis set limit can be very closely approached. History Molpro was designed and maintained by Wilfried Meyer and Peter Pulay Peter Pulay (born September 20, 1941, in Veszprém, Hungary) is a theoretical chemist. He is the Roger B. Bost Distinguished Professor of Chemistry in the Department of Chemis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




PQS (chemical)
PQS is a general purpose quantum chemistry program. Its roots go back to the first ab initio gradient program developed in Professor Peter Pulay's group but now it is developed and distributed commercially by Parallel Quantum Solutions. There is a reduction in cost for academic users and a site license. Its strong points are geometry optimization, NMR chemical shift calculations, and large MP2 calculations, and high parallel efficiency on computing clusters. It includes many other capabilities including Density functional theory, the semiempirical methods, MINDO/3, MNDO, AM1 and PM3, Molecular mechanics using the SYBYL 5.0 Force Field, the quantum mechanics/molecular mechanics mixed method using the ONIOM method, natural bond orbital (NBO) analysis and COSMO solvation models. Recently, a highly efficient parallel CCSD(T) code for closed shell systems has been developed. This code includes many other post Hartree–Fock methods: MP2, MP3, MP4, CISD, CEPA, QCISD and so o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


MOLPRO Logo
MOLPRO is a software package used for accurate ''ab initio'' quantum chemistry calculations. It is developed by Peter Knowles at Cardiff University and Hans-Joachim Werner at Universität Stuttgart in collaboration with other authors. The emphasis in the program is on highly accurate computations, with extensive treatment of the electron correlation problem through the multireference configuration interaction, coupled cluster and associated methods. Integral-direct local electron correlation methods reduce the increase of the computational cost with molecular size. Accurate ab initio calculations can then be performed for larger molecules. With new explicitly correlated methods the basis set limit can be very closely approached. History Molpro was designed and maintained by Wilfried Meyer and Peter Pulay Peter Pulay (born September 20, 1941, in Veszprém, Hungary) is a theoretical chemist. He is the Roger B. Bost Distinguished Professor of Chemistry in the Department of Chemis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quantemol
Quantemol Ltd is based in University College London initiated by Professor Jonathan Tennyson (physicist), Jonathan Tennyson FRS and Dr. Daniel Brown in 2004. The company initially developed a unique software tool, #Quantemol-N, Quantemol-N, which provides full accessibility to the highly sophisticated UK molecular R-matrix codes, used to model electron polyatomic molecule interactions. Since then Quantemol has widened to further types of simulation, with Plasma (physics), plasmas and industrial plasma tools, in #Quantemol-VT, Quantemol-VT in 2013 and launched in 2016 a sustainable database #Quantemol-DB, Quantemol-DB, representing the chemical and radiative transport properties of a wide range of plasmas. Quantemol-N The Quantemol-N software system has been developed to simplify use of UK Molecular R-matrix Codes, UK R-matrix codes. It provides an interface for non specialists to perform ab initio electron-molecule scattering calculations. Quantemol-N calculates a variety of ob ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Q-Chem
Q-Chem is a general-purpose electronic structure package featuring a variety of established and new methods implemented using innovative algorithms that enable fast calculations of large systems on various computer architectures, from laptops and regular lab workstations to midsize clusters and HPCC, using density functional and wave-function based approaches. It offers an integrated graphical interface and input generator; a large selection of functionals and correlation methods, including methods for electronically excited states and open-shell systems; solvation models; and wave-function analysis tools. In addition to serving the computational chemistry community, Q-Chem also provides a versatile code development platform. History Q-Chem software is maintained and distributed by Q-Chem, Inc., located in Pleasanton, California, USA. It was founded in 1993 as a result of disagreements within the Gaussian company that led to the departure (and subsequent "banning") of John Pople ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Grace (plotting Tool)
Grace is a free WYSIWYG 2D graph plotting tool, for Unix-like operating systems. The package name stands for "GRaphing, Advanced Computation and Exploration of data." Grace uses the X Window System and Motif for its GUI. It has been ported to VMS, OS/2, and Windows 9*/NT/2000/XP (on Cygwin). In 1996, Linux Journal described Xmgr (an early name for Grace) as one of the two most prominent graphing packages for Linux. History Grace is a descendant of the ACE/gr plotting tool (also known as Xvgr), based on Xview libraries from OpenWindows. Xvgr was originally written by Paul Turner of Portland, Oregon, who continued development until version 4.00. In 1996, development was taken over by the ACE/gr development team, led by Evgeny Stambulchik at the Weizmann Institute of Science, Israel. Development of Xmgr was frozen at version 4.1.2 in 1998 and the Grace project was started as a fork, released under the GPL. The name stands for "GRaphing, Advanced Computation and Exploration ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Chemistry
Quantum chemistry, also called molecular quantum mechanics, is a branch of physical chemistry focused on the application of quantum mechanics to chemical systems, particularly towards the quantum-mechanical calculation of electronic contributions to physical and chemical properties of Molecule, molecules, Material, materials, and solutions at the atomic level. These calculations include systematically applied approximations intended to make calculations computationally feasible while still capturing as much information about important contributions to the computed Wave function, wave functions as well as to observable properties such as structures, spectra, and thermodynamic properties. Quantum chemistry is also concerned with the computation of quantum effects on molecular dynamics and chemical kinetics. Chemists rely heavily on spectroscopy through which information regarding the Quantization (physics), quantization of energy on a molecular scale can be obtained. Common metho ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ab Initio Quantum Chemistry Methods
''Ab initio'' quantum chemistry methods are computational chemistry methods based on quantum chemistry. The term was first used in quantum chemistry by Robert Parr and coworkers, including David Craig in a semiempirical study on the excited states of benzene. The background is described by Parr. ''Ab initio'' means "from first principles" or "from the beginning", implying that the only inputs into an ''ab initio'' calculation are physical constants. ''Ab initio'' quantum chemistry methods attempt to solve the electronic Schrödinger equation given the positions of the nuclei and the number of electrons in order to yield useful information such as electron densities, energies and other properties of the system. The ability to run these calculations has enabled theoretical chemists to solve a range of problems and their importance is highlighted by the awarding of the Nobel prize to John Pople and Walter Kohn. Accuracy and scaling ''Ab initio'' electronic structure method ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


TURBOMOLE
TURBOMOLE is an ab initio computational chemistry program that implements various quantum chemistry methods. It was initially developed by the group of Prof. Reinhart Ahlrichs at the University of Karlsruhe. In 2007, TURBOMOLE GmbH, founded by R. Ahlrichs, F. Furche, C. Hättig, W. Klopper, M. Sierka, and F. Weigend, took over the responsibility for the coordination of the scientific development of TURBOMOLE program, for which the company holds all copy and intellectual property rights. In 2018 David P. Tew joined the TURBOMOLE GmbH. Since 1987, this program is one of the useful tools as it involves in many fields of research including heterogeneous and homogeneous catalysis, organic and inorganic chemistry, spectroscopy as well as biochemistry. This can be illustrated by citation records of Ahlrich's 1989 publication which is more than 6700 times as of 18 July 2020. In the year 2014, the second Turbomole article has been published. The number of citations from both papers indica ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


TeraChem
TeraChem is a computational chemistry software program designed for CUDA-enabled Nvidia Graphics processing unit, GPUs. The initial development started at the University of Illinois at Urbana-Champaign and was subsequently commercialized. It is currently distributed by PetaChem, LLC, located in Silicon Valley. As of 2020, the software package is still under active development. Core features TeraChem is capable of fast ''Ab initio quantum chemistry methods, ab initio'' molecular dynamics and can utilize density functional theory (DFT) methods for ''Nanoscopic scale, nanoscale'' biomolecular systems with hundreds of atoms. All the methods used are based on Gaussian orbitals, in order to improve performance on contemporary (2010s) computer hardware. Press coverage * Chemical and Engineering News (C&EN) magazine of the American Chemical Society first mentioned the development of TeraChem in Fall 2008. * Recently, C&EN magazine has a feature article covering molecular modeling on GPU a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

MacOS
macOS (; previously OS X and originally Mac OS X) is a Unix operating system developed and marketed by Apple Inc. since 2001. It is the primary operating system for Apple's Mac computers. Within the market of desktop and laptop computers it is the second most widely used desktop OS, after Microsoft Windows and ahead of ChromeOS. macOS succeeded the classic Mac OS, a Mac operating system with nine releases from 1984 to 1999. During this time, Apple cofounder Steve Jobs had left Apple and started another company, NeXT, developing the NeXTSTEP platform that would later be acquired by Apple to form the basis of macOS. The first desktop version, Mac OS X 10.0, was released in March 2001, with its first update, 10.1, arriving later that year. All releases from Mac OS X 10.5 Leopard and after are UNIX 03 certified, with an exception for OS X 10.7 Lion. Apple's other operating systems (iOS, iPadOS, watchOS, tvOS, audioOS) are derivatives of macOS. A promi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


PSI (computational Chemistry)
Psi is an ab initio computational chemistry package originally written by the research group of Henry F. Schaefer, III (University of Georgia). Utilizing Psi, one can perform a calculation on a molecular system with various kinds of methods such as Hartree-Fock, Post-Hartree–Fock electron correlation methods, and Density functional theory. The program can compute energies, optimize molecular geometries, and compute vibrational frequencies. The major part of the program is written in C++, while Python API is also available, which allows users to perform complex computations or automate tasks easily. Psi4 is the latest release of the program package - it is open source, released as free under the GPL through GitHub. Primary development of Psi4 is currently performed by the research groups of David Sherrill (Georgia Tech), T. Daniel Crawford (Virginia Tech), Francesco Evangelista (Emory University), and Henry F. Schaefer, III (University of Georgia), with substantial contribu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computational Chemistry
Computational chemistry is a branch of chemistry that uses computer simulation to assist in solving chemical problems. It uses methods of theoretical chemistry, incorporated into computer programs, to calculate the structures and properties of molecules, groups of molecules, and solids. It is essential because, apart from relatively recent results concerning the hydrogen molecular ion (dihydrogen cation, see references therein for more details), the quantum many-body problem cannot be solved analytically, much less in closed form. While computational results normally complement the information obtained by chemical experiments, it can in some cases predict hitherto unobserved chemical phenomena. It is widely used in the design of new drugs and materials. Examples of such properties are structure (i.e., the expected positions of the constituent atoms), absolute and relative (interaction) energies, electronic charge density distributions, dipoles and higher multipole moments, vi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]